MiR-125a-5p Alleviates Dysfunction and Inflammation of Pentylenetetrazol- induced Epilepsy Through Targeting Calmodulin-dependent Protein Kinase IV (CAMK4)

2019 ◽  
Vol 16 (4) ◽  
pp. 365-372 ◽  
Author(s):  
Qishuai Liu ◽  
Li Wang ◽  
Guizhen Yan ◽  
Weifa Zhang ◽  
Zhigang Huan ◽  
...  

Background: MicroRNAs (miRNA) are known to play a key role in the etiology and treatment of epilepsy through controlling the expression of gene. However, miR-125a-5p in the epilepsy is little known. Epilepsy in rat models was induced by Pentylenetetrazol (PTZ) and miR- 125a-5p profiles in the hippocampus were investigated in our experiment. Also, the relationship between miR-125a-5p and calmodulin-dependent protein kinase IV (CAMK4) was identified and the related mechanism was also illustrated. Methods: The miR-125a-5p mRNA expression levels were evaluated by quantitative real time polymerase chain reaction (qRT-PCR). Western Blot (WB) was used to analyze the CAMK4 protein expression levels. Seizure score, latency and duration were determined based on a Racine scale. The enzyme-linked immunosorbent assay (ELISA) was used to analyze the inflammatory factor expression. The relationship between miR-125a-5p and CAMK4 was detected through dual luciferase assay. Results: Downregulation of miR-125a-5p was observed in the hippocampus of PTZ-induced epilepsy rats. The overexpression of miR-125a-5p attenuated seizure and decreased inflammatory factor level in the hippocampus of PTZ-induced rats. The miR-125a-5p alleviated epileptic seizure and inflammation in PTZ-induced rats by suppressing its target gene, CAMK4. Conclusion: miR-125a-5p may represent a novel therapeutic treatment for PTZ-induced epilepsy by preventing the activation of CAMK4.

1993 ◽  
Vol 265 (1) ◽  
pp. C201-C211 ◽  
Author(s):  
T. A. Wyatt ◽  
T. M. Lincoln ◽  
K. B. Pryzwansky

The effects of guanosine 3',5'-cyclic monophosphate (cGMP) on the secretory response of activated human neutrophils were investigated using LY-83583, an inhibitor of soluble guanylate cyclase, and L-arginine, the precursor of nitric oxide formation. A 30% release of myeloperoxidase (MPO) and lactoferrin (LF) from the primary and specific granules, respectively, was detected by enzyme-linked immunosorbent assay in adhered neutrophils stimulated with 0.1 microM N-formyl-methionyl-leucyl-phenylalanine (FMLP) or 20 microM A-23187. LY-83583 (100 microM) inhibited the release of both LF and MPO after stimulation with FMLP or A-23187. Conversely, preincubation of neutrophils with 0.5 mM L-arginine augmented the release of LF and MPO in FMLP- and A-23187-stimulated cells. Concurrent with the increase in the degranulation response was an elevation of cGMP levels in L-arginine-treated cells, while stimulated cGMP levels were reduced in LY-83583-treated cells. Furthermore, cGMP-dependent protein kinase (G-kinase) activity was reduced in LY-83583-treated cells, as determined by the delay in G-kinase translocation to intermediate filaments and the inhibition of vimentin phosphorylation. Degranulation, elevation of cGMP levels, and targeting of G-kinase were also dependent on the concentration of A-23187 or FMLP. These data suggest that activators of neutrophil degranulation mediate this response through a cGMP-dependent protein kinase mechanism.


2019 ◽  
Vol 10 (11) ◽  
Author(s):  
Zhengzhao Li ◽  
Junyu Lu ◽  
Guang Zeng ◽  
Jielong Pang ◽  
Xiaowen Zheng ◽  
...  

Abstract This study was designed to investigate the mechanism by which miR-129-5p affects the biological function of liver cancer cells. The expression levels of miR-129–5p in liver cancer tissues and cells were, respectively, determined. Crystal violet staining and flow cytometry were used to detect cell proliferation and apoptosis. Wound healing assay and transwell assay were performed to test cell migration and invasion. The target gene of miR-129–5p was analyzed and verified by bioinformatics analysis and luciferase reporter assay. Tumorigenicity assays in nude mice were used to test the antitumor ability of calcium calmodulin-dependent protein kinase IV (CAMK4). miR-129–5p was found to be underexpressed in hepatocellular cancer tissues and cells and also to inhibit liver cells proliferation, migration, and invasion and promote apoptosis. CAMK4 was a direct target for miR-129–5p and was lowly expressed in liver cancer tissues and cells. CAMK4 was also found to inhibit liver cells proliferation, migration and invasion, and promote apoptosis. CAMK4 might exert an antitumor effect by inhibiting the activation of mitogen-activated protein kinase (MAPK). MiR-129–5p was a tumor suppressor with low expression in liver cancer tissues and cells. CAMK4, which is a direct target gene of miR-129–5p, could inhibit tumor by inhibiting the activation of MAPK signaling pathway.


2000 ◽  
Vol 28 (5) ◽  
pp. A457-A457
Author(s):  
Moica Benčina ◽  
M. štaudohar ◽  
H. Panemann ◽  
GJG Ruijter ◽  
J. Visser ◽  
...  

2000 ◽  
Vol 28 (5) ◽  
pp. A425-A425
Author(s):  
Mojca Bencina ◽  
M. štaudohar ◽  
H. Panemann ◽  
GJG Ruijter ◽  
J. Visser ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document