A New Hypothesis of Pathogenesis Based on the Divorce between Mitochondria and their Host Cells: Possible Relevances for the Alzheimer's Disease

2010 ◽  
Vol 999 (999) ◽  
pp. 1-16 ◽  
Author(s):  
L.F. Agnati ◽  
D. Guidolin ◽  
F. Baluska ◽  
G. Leo ◽  
P.W. Barlow ◽  
...  
Author(s):  
Qiyue Ding ◽  
Nataliia V. Shults ◽  
Brent T. Harris ◽  
Yuichiro J. Suzuki

AbstractAlzheimer’s disease is a chronic neurodegenerative disorder and represents the main cause of dementia. Currently, the world is suffering from the pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that uses angiotensin-converting enzyme 2 (ACE2) as a receptor to enter the host cells. In COVID-19, neurological manifestations have been reported to occur. The present study demonstrates that the protein expression level of ACE2 is upregulated in the brain of Alzheimer’s disease patients. The increased ACE2 expression is not age-dependent, suggesting the direct relationship between Alzheimer’s disease and the ACE2 expression. Oxidative stress has been implicated in the pathogenesis of Alzheimer’s disease, and Alzheimer’s disease brains examined in this study also exhibited higher carbonylated proteins as well as increased thiol oxidation state of peroxiredoxin 6 (Prx6). The positive correlation was found between the increased ACE2 protein expression and oxidative stress in Alzheimer’s disease brain. Thus, the present study reveals the relationships between Alzheimer’s disease and ACE2, the receptor for SARS-CoV-2. These results warrant monitoring Alzheimer’s disease patients with COVID-19 carefully for the possible higher viral load in the brain and long-term adverse neurological consequences.


2021 ◽  
pp. 1-18
Author(s):  
Alison M. Luckey ◽  
Ian H. Robertson ◽  
Brian Lawlor ◽  
Anusha Mohan ◽  
Sven Vanneste

This article aims to reevaluate our approach to female vulnerability to Alzheimer’s disease (AD) and put forth a new hypothesis considering how sex differences in the locus coeruleus-noradrenaline (LC-NA) structure and function could account for why females are more likely to develop AD. We specifically focus our attention on locus coeruleus (LC) morphology, the paucity of estrogens, neuroinflammation, blood-brain barrier permeability, apolipoprotein ɛ4 polymorphism (APOE ɛ4), and cognitive reserve. The role of the LC-NA system and sex differences are two of the most rapidly emerging topics in AD research. Current literature either investigates the LC due to it being one of the first brain areas to develop AD pathology or acknowledges the neuroprotective effects of estrogens and how the loss of these female hormones have the capacity to contribute to the sex differences seen in AD; however, existing research has neglected to concurrently examine these two rationales and therefore leaving our hypothesis undetermined. Collectively, this article should assist in alleviating current challenges surrounding female AD by providing thought-provoking connections into the interrelationship between the disruption of the female LC-NA system, the decline of estrogens, and AD vulnerability. It is therefore likely that treatment for this heterogeneous disease may need to be distinctly developed for females and males separately, and may require a precision medicine approach.


2021 ◽  
Vol 22 (4) ◽  
pp. 1687
Author(s):  
Qiyue Ding ◽  
Nataliia V. Shults ◽  
Sergiy G. Gychka ◽  
Brent T. Harris ◽  
Yuichiro J. Suzuki

Alzheimer’s disease is a chronic neurodegenerative disorder and represents the main cause of dementia globally. Currently, the world is suffering from the coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a virus that uses angiotensin-converting enzyme 2 (ACE2) as a receptor to enter the host cells. In COVID-19, neurological manifestations have been reported to occur. The present study demonstrates that the protein expression level of ACE2 is upregulated in the brain of patients with Alzheimer’s disease. The increased ACE2 expression is not age-dependent, suggesting the direct relationship between Alzheimer’s disease and ACE2 expression. Oxidative stress has been implicated in the pathogenesis of Alzheimer’s disease, and brains with the disease examined in this study also exhibited higher carbonylated proteins, as well as an increased thiol oxidation state of peroxiredoxin 6 (Prx6). A moderate positive correlation was found between the increased ACE2 protein expression and oxidative stress in brains with Alzheimer’s disease. In summary, the present study reveals the relationships between Alzheimer’s disease and ACE2, the receptor for SARS-CoV-2. These results suggest the importance of carefully monitoring patients with both Alzheimer’s disease and COVID-19 in order to identify higher viral loads in the brain and long-term adverse neurological consequences.


2019 ◽  
Vol 42 ◽  
Author(s):  
Colleen M. Kelley ◽  
Larry L. Jacoby

Abstract Cognitive control constrains retrieval processing and so restricts what comes to mind as input to the attribution system. We review evidence that older adults, patients with Alzheimer's disease, and people with traumatic brain injury exert less cognitive control during retrieval, and so are susceptible to memory misattributions in the form of dramatic levels of false remembering.


Author(s):  
J. Metuzals ◽  
D. F. Clapin ◽  
V. Montpetit

Information on the conformation of paired helical filaments (PHF) and the neurofilamentous (NF) network is essential for an understanding of the mechanisms involved in the formation of the primary lesions of Alzheimer's disease (AD): tangles and plaques. The structural and chemical relationships between the NF and the PHF have to be clarified in order to discover the etiological factors of this disease. We are investigating by stereo electron microscopic and biochemical techniques frontal lobe biopsies from patients with AD and squid giant axon preparations. The helical nature of the lesion in AD is related to pathological alterations of basic properties of the nervous system due to the helical symmetry that exists at all hierarchic structural levels in the normal brain. Because of this helical symmetry of NF protein assemblies and PHF, the employment of structure reconstruction techniques to determine the conformation, particularly the handedness of these structures, is most promising. Figs. 1-3 are frontal lobe biopsies.


Sign in / Sign up

Export Citation Format

Share Document