Emergence of Multi-Drug Resistance Gram-Positive Bacteria and New Active Antibiotics

2005 ◽  
Vol 4 (3) ◽  
pp. 235-257 ◽  
Author(s):  
Stefania Stefani
2020 ◽  
Vol 8 (2) ◽  
pp. 191 ◽  
Author(s):  
Despoina Koulenti ◽  
Elena Xu ◽  
Andrew Song ◽  
Isaac Yin Sum Mok ◽  
Drosos E. Karageorgopoulos ◽  
...  

Antimicrobial agents are currently the mainstay of treatment for bacterial infections worldwide. However, due to the increased use of antimicrobials in both human and animal medicine, pathogens have now evolved to possess high levels of multi-drug resistance, leading to the persistence and spread of difficult-to-treat infections. Several current antibacterial agents active against Gram-positive bacteria will be rendered useless in the face of increasing resistance rates. There are several emerging antibiotics under development, some of which have been shown to be more effective with an improved safety profile than current treatment regimens against Gram-positive bacteria. We will extensively discuss these antibiotics under clinical development (phase I-III clinical trials) to combat Gram-positive bacteria, such as Staphylococcus aureus, Enterococcus faecium and Streptococcus pneumoniae. We will delve into the mechanism of actions, microbiological spectrum, and, where available, the pharmacokinetics, safety profile, and efficacy of these drugs, aiming to provide a comprehensive review to the involved stakeholders.


2019 ◽  
Vol 13 (1) ◽  
pp. 301-307
Author(s):  
Alem A. Kalayu ◽  
Ketema Diriba ◽  
Chuchu Girma ◽  
Eman Abdella

Background: Surgical Site Infections (SSIs) are among the frequently reported healthcare-acquired infections worldwide. Successful treatment of SSIs is affected by the continuous evolvement of drug-resistant microbes. This study investigated the incidence of SSIs, identifying the major etiologic agents and their drug resistance patterns in Yekatit 12 Hospital, Ethiopia. Methods: A cross-sectional study was conducted on 649 patients who underwent surgery at Yekatit 12 hospital from April 2016 to April 2017. Socio-demographic and clinical data were collected from each patient on admission. After surgery, they were followed for SSI occurrence. SSI was initially diagnosed by a senior surgeon based on standard clinical criteria and then confirmed by culture. Isolates were tested for drug resistance according to the clinical and laboratory standards institute guideline. Results: Of the 649 study participants, 56% were females. Their age ranged from 9 months to 88 years with a median age of 37 years. The incidence of culture-confirmed SSI was 10.2% (66/649) where 73 isolates were recovered. About two-third of the isolates were Gram-positive bacteria. Staphylococcus aureus was the most frequently isolated (27/73, 37%) followed by Coagulase-negative staphylococci (18/73, 24.7%), Escherichia coli (11/73, 15.1%) and Klebsiella species (10/73, 13.7%). About 89% and 44% of S. aureus isolates were resistant to penicillin and trimethoprim-sulfamethoxazole, respectively. MRSA constituted 11% of the S. aureus isolates. All the Gram-negative isolates were resistant to ampicillin and trimethoprim-sulfamethoxazole but susceptible to amikacin and meropenem. Klebsiella species showed 70-100% resistance to ceftazidime, cefuroxime, augmentin, chloramphenicol, ciprofloxacin, cefepime and gentamicin. About 82% of E. coli isolates were resistant for chloramphenicol, cefepime, ceftazidime, augmentin, cefuroxime and 64% for gentamicin and ciprofloxacin. Conclusion: The incidence of surgical site infection in Yekatit 12 hospital is 10.2%. Most of the SSIs were due to Gram-positive bacteria. Gram-negative isolates showed high resistance to the most commonly prescribed drugs. No resistance was found for meropenem indicating the absence of carbapenem-resistant bacteria. SSI treatments should be guided by culture and drug resistance test. Better infection prevention practices and continuous surveillance of antimicrobial resistance in the hospital are recommended for better patient care.


Author(s):  
Amit Bhatia ◽  
Juhi Kalra ◽  
Saurabh Kohli ◽  
Barnali Kakati ◽  
Reshma Kaushik

Background: Antimicrobials are a major class of drugs prescribed in Intensive Care Unit (ICU). Widespread use of empirical antibiotic therapy has facilitated the emergence of drug resistance, since empirical therapy is very often initiated at the outset, even before culture and sensitivity reports are available. The problem of drug resistance is on a rise, therefore, this study was planned to assess the drug resistance and sensitivity patterns of the blood isolates recovered from ICU.Methods: An observational- prospective study was conducted in the Tertiary care teaching hospital over a period of twelve months to assess antibiotic resistance and sensitivity pattern. A total of 104 consecutive patients receiving antibiotics in the ICU and having blood cultures with significant growth were included in the study. Blood sample was collected and after obtaining a culture growth, the identification and antimicrobial sensitivity testing was done.Results: Blood stream infection by Gram-negative bacteria (50.96%) was more common than Gram-positive bacteria (49.04%). Coagulase negative Staphylococci (CoNS) was the predominant single blood culture isolate (35.58%). Klebsiella pneumoniae (13.46%), Escherichia coli (12.50%), Acinetobacter baumannii complex (7.69%) were commonly isolated gram negative organisms. Gram positive isolates were resistant to beta lactams in maximum patients whereas Tigecycline, Linezolid, Daptomycin, Vancomycin, Nitrofurantoin and Teicoplanin were sensitive against them. Common gram negative isolates were sensitive to Colistin and Tigecycline but resistant to most of the antibiotics.Conclusions: A preponderance of gram negative bacteria over gram positive bacteria was noted with a higher degree of resistance to most of the first line antimicrobial agents. 


2021 ◽  
Vol 45 (3) ◽  
pp. 167-178
Author(s):  
Mengistu Abayneh ◽  
Shewangizaw HaileMariam ◽  
Molla Asnake

Abstract Background Bloodstream infections (BSIs) are one of the most common infections seen in all age groups and in all locations. The current knowledge on the patterns of bacterial profile, and its antibiotic resistance are essential to design and implement appropriate interventions. This study was conducted to assess the prevalence and multi-drug resistance pattern of bacterial isolates among septicemia and/or bacteremia suspected cases in Ethiopia. Methods Searching was conducted in databases of PubMed, Research Gate, Scopus and Google Scholar. In addition, manual searching is also conducted in bibliographies of included studies and in other meta-analysis studies. Required data were extracted from articles published up to 2020 on the bacterial profile of septicemia in Ethiopia, and analyzed using comprehensive meta-analysis version 3.3.0 software. Results A total of 5,823 septicemia suspected cases were extracted from 18 included studies and the overall blood culture positive rate of 31.9% (95% CI: 0.261–0.382). Of these, the overall Gram positive and Gram negative isolates was 57.8% (95% CI: 0.534–0.584) and 42.2% (95% CI: 0.416–0.466), respectively. Among Gram positives, predominantly reported isolates was Staphylococcus  aureus (47.9%: 480 of 1,003), followed by Coagulase-Negative Staphylococcus (42.7%: 428 of 1,003), whereas among Gram negatives, the most frequently reported isolates was Klebsiella species (29.8%: 218 of 731), followed by Escherichia  coli (23.1%: 169 of 731). Significant levels of resistance was reported against ampicillin, amoxicillin, ceftriaxone, co-trimoxazole and tetracycline with a pooled resistance range of 40.6–55.3% in Gram positive and 52.8–85.7% in Gram negative isolates. The pooled estimates of multi-drugs resistance (MDR) was (66.8%) among Gram positives and (80.5%) among Gram negatives, with the overall MDR rate of (74.2%). Conclusions The reported blood culture positive rates among septicemia cases were relatively high. Second, the level of drug and multi-drug resistant isolates against commonly prescribed antibiotics was significant. However, the scarcity of data on culture confirmed septicemia cases as well as patterns of antimicrobial resistance may overshadow the problem.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Vinson James ◽  
Anand Prakash ◽  
Kayur Mehta ◽  
Tarangini Durugappa

Abstract Background This study was conducted to evaluate the microbiological profile of bacterial isolates in febrile neutropenia in a pediatric oncology unit, thereby, reviewing the use of restricted antibiotics and need for aggressive medical treatment accordingly. Methods A prospective observational study was conducted in a paediatric haemat-oncology division of a tertiary care teaching hospital in southern India from September 2014 to August 2016. One hundred and thirty children with febrile neutropenia were enrolled in the study. Blood cultures were performed using automated system. Cultures from other sites were obtained if needed, based on the clinical profile. Standard antibiotic susceptibility testing was done. Statistical analysis was done using SPSS. Results One hundred and thirty children were enrolled for the study. Two hundred and fifty episodes of febrile neutropenia were studied. Three hundred and eighty four cultures were sent and 92 (24%) cultures were positive. There were 48 (52.2%) Gram negative isolates followed by 33 (35.8%) Gram positive isolates, six (6.5%) fungal isolates and five (5.5%) poly-microbial cultures. Lactose fermenting Gram negative bacilli (20 isolates, 31.5%) were the most frequently isolated in the Gram negative group, with Escherichia coli being the most common organism (19 isolates, 20.6%). Amongst the Gram positive coagulase negative staphylococcus was the most common (twenty seven isolates, 29%). Escherichia coli and Non lactose fermenting gram negative bacteria (NFGNB) had only 36, 25% sensitivity to ceftazidime, respectively. Most Gram negative bacilli were found to have better sensitivity to amikacin (mean: 57%). There was a higher prevalence of extended spectrum beta lactamase producing organisms. Pan drug resistance, Extreme drug resistance and Multi drug resistance was found in three, twenty and thirteen Gram negative isolates respectively.Escherichia coli and Klebsiella were often drug resistant. Significantly higher mortality was associated with Gram negative isolates (eight deaths out of the thirteen deaths, 61.5%). Conclusions Our results show the importance of surveillance, monitoring resistance frequencies and identifying risk factors specific to each region. Given that significant mortality is attributed to drug resistant Gram negative bacilli, early initiation of appropriate antibiotics to cover for drug resistance is required while formulating empirical antibiotic policies for febrile neutropenia in the oncology units in the developing world.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Adane Bitew ◽  
Yeshiwork Abebaw ◽  
Delayehu Bekele ◽  
Amete Mihret

Background. Bacterial vaginosis is a global concern due to the increased risk of acquisition of sexually transmitted infections.Objectives. To determine the prevalence of bacterial vaginosis and bacteria causing aerobic vaginitis.Methods. A cross-sectional study was conducted among 210 patients between September 2015 and July 2016 at St. Paul’s Hospital. Gram-stained vaginal swabs were examined microscopically and graded as per Nugent’s procedure. Bacteria causing aerobic vaginitis were characterized, and their antimicrobial susceptibility pattern was determined.Results. The overall prevalence of bacterial vaginosis was 48.6%. Bacterial vaginosis was significantly associated with number of pants used per day (p=0.001) and frequency of vaginal bathing (p=0.045). Of 151 bacterial isolates, 69.5% were Gram-negative and 30.5% were Gram-positive bacteria. The overall drug resistance level of Gram-positive bacteria was high against penicillin, tetracycline, and erythromycin. Cefoxitin and tobramycin were the most active drugs against Gram-positive bacteria. The overall drug resistance level of Gram-negative bacteria was high against tetracycline, ampicillin, and amoxicillin. Amikacin and tobramycin were the most active drugs against Gram-negative bacteria.Conclusions. The prevalence of bacterial vaginosis was high and was affected by individual hygiene. Routine culture of vaginal samples should be performed on patients with vaginitis and the drug susceptibility pattern of each isolate should be determined.


2020 ◽  
Author(s):  
Vinson James ◽  
Anand Prakash ◽  
Kayur Mehta ◽  
Tarangini Durugappa

Abstract Background: This study was conducted to evaluate the microbiological profile of bacterial isolates in febrile neutropenia in a pediatric oncology unit, thereby, reviewing the use of restricted antibiotics and need for aggressive medical treatment accordingly.Methods: A prospective observational study was conducted in a paediatric haemat-oncology division of a tertiary care teaching hospital in southern India from September 2014 to August 2016. Children with febrile neutropenia were enrolled in the study. Blood cultures were performed using automated system. Cultures from other sites were obtained if needed, based on the clinical profile. Standard antibiotic susceptibility testing was done. Statistical analysis was done using SPSS.Results: One hundred and thirty children were enrolled for the study. Two hundred and fifty episodes of febrile neutropenia were studied. Three hundred and eighty four cultures were sent and 92 (24%) cultures were positive. There were 52.2% gram negative isolates followed 35.8% gram positive isolates, 6.5% fungal isolates and 5.5% poly-microbial cultures. Lactose fermenting gram negative bacteria (29 isolates, 31.5%) were the most frequently isolated in the gram negative group, with Escherichia coli being the most common organism (19 isolates, 20.6%). Amongst gram positive coagulase negative staphylococcus (CONS) was the most common (29%). Escherichia coli and NFGNB had only 36%, 25% sensitivity to ceftazidime respectively. Most gram negative bacteria were found to have better sensitivity to amikacin (mean: 57). There was a higher prevalence of extended spectrum beta lactamase producing organisms. 36 out of 48 GNB were found to be either multi/extremely/pan drug resistant. Escherichia coli and Klebsiella were often drug resistant. Significantly higher mortality was associated with gram negative isolates (61.5%)Conclusions: In view of higher prevalence of gram negative isolates and emergence of multi drug resistance, frequent audits of resistance patterns should guide the choice of antimicrobials in febrile neutropenia management. Our results show the importance of surveillance, monitoring resistance frequencies and identifying risk factors specific to each region. Given that significant mortality is attributed to drug resistant gram negative bacteria, early initiation of appropriate antibiotics to cover for drug resistance is required while formulating empirical antibiotic policies for febrile neutropenia in the oncology units in the developing world.


Sign in / Sign up

Export Citation Format

Share Document