1,3,5-Triazine-azole Hybrids and their Anticancer Activity

2020 ◽  
Vol 20 (16) ◽  
pp. 1481-1492
Author(s):  
Hua Guo ◽  
Quan-Ping Diao

1,3,5-Triazine and azole can interact with various therapeutic targets, and their derivatives possess promising in vitro and in vivo anticancer activity. Hybrid molecules have the potential to enhance efficiency, overcome drug resistance and reduce side effects, and many hybrid molecules are under different phases of clinical trials, so hybridization of 1,3,5-triazine with azole may provide valuable therapeutic intervention for the treatment of cancer. Substantial efforts have been made to develop azole-containing 1,3,5-triazine hybrids as novel anticancer agents, and some of them exhibited excellent activity. This review emphasizes azole-containing 1,3,5-triazine hybrids with potential anticancer activity, and the structure-activity relationships as well as the mechanisms of action are also discussed to provide comprehensive and target-oriented information for the development of this kind of anticancer drugs.

2020 ◽  
Vol 20 (16) ◽  
pp. 1441-1460 ◽  
Author(s):  
Xiaoyue Wen ◽  
Yongqin Zhou ◽  
Junhao Zeng ◽  
Xinyue Liu

1,2,4-Triazole derivatives possess promising in vitro and in vivo anticancer activity, and many anticancer agents such as fluconazole, tebuconazole, triadimefon, and ribavirin bear a 1,2,4-triazole moiety, revealing their potential in the development of novel anticancer agents. This review emphasizes the recent advances in 1,2,4-triazole-containing compounds with anticancer potential, and the structureactivity relationships as well as mechanisms of action are also discussed.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Jin-Jian Lu ◽  
Jiao-Lin Bao ◽  
Xiu-Ping Chen ◽  
Min Huang ◽  
Yi-Tao Wang

Alkaloids are important chemical compounds that serve as a rich reservoir for drug discovery. Several alkaloids isolated from natural herbs exhibit antiproliferation and antimetastasis effects on various types of cancers bothin vitroandin vivo. Alkaloids, such as camptothecin and vinblastine, have already been successfully developed into anticancer drugs. This paper focuses on the naturally derived alkaloids with prospective anticancer properties, such as berberine, evodiamine, matrine, piperine, sanguinarine, and tetrandrine, and summarizes the mechanisms of action of these compounds. Based on the information in the literature that is summarized in this paper, the use of alkaloids as anticancer agents is very promising, but more research and clinical trials are necessary before final recommendations on specific alkaloids can be made.


Author(s):  
Agnieszka Wróbel ◽  
Danuta Drozdowska

Background: Dihydrofolate reductase (DHFR) has been known for decades as a molecular target for antibacterial, antifungal and anti-malarial treatments. This enzyme is becoming increasingly important in the design of new anticancer drugs, which is confirmed by numerous studies including modelling, synthesis and in vitro biological research. This review aims to present and discuss some remarkable recent advances on the research of new DHFR inhibitors with potential anticancer activity. Methods: The scientific literature of the last decade on the different types of DHFR inhibitors has been searched. The studies on design, synthesis and investigation structure-activity relationship were summarized and divided into several subsections depending on the leading molecule and its structural modification. Various methods of synthesis, potential anticancer activity and possible practical applications as DHFR inhibitors of new chemical compounds were described and discussed. <p> Results: This review presents the current state of knowledge on the modification of known DHFR inhibitors and the structures and searching for over eighty new molecules, designed as potential anticancer drugs. In addition, DHFR inhibitors acting on thymidylate synthase (TS), carbon anhydrase (CA) and even DNA-binding are presented in this paper. <p> Conclusion: Thorough physicochemical characterization and biological investigations it is possible to understand structure-activity relationship of DHFR inhibitors. This will enable even better design and synthesis of active compounds, which would have the expected mechanism of action and the desired activity.


2020 ◽  
Vol 15 (1) ◽  
pp. 2-13 ◽  
Author(s):  
Hongyu Tao ◽  
Ling Zuo ◽  
Huanli Xu ◽  
Cong Li ◽  
Gan Qiao ◽  
...  

Background: In recent years, many novel alkaloids with anticancer activity have been found in China, and some of them are promising for developing as anticancer agents. Objective: This review aims to provide a comprehensive overview of the information about alkaloid anticancer agents disclosed in Chinese patents, and discusses their potential to be developed as anticancer drugs used clinically. Methods: Anticancer alkaloids disclosed in Chinese patents in recent 5 years were presented according to their mode of actions. Their study results published on PubMed, and SciDirect databases were presented. Results: More than one hundred anticancer alkaloids were disclosed in Chinese patents and their mode of action referred to arresting cell cycle, inhibiting protein kinases, affecting DNA synthesis and p53 expression, etc. Conclusion: Many newly found alkaloids displayed potent anticancer activity both in vitro and in vivo, and some of the anticancer alkaloids acted as protein kinase inhibitors or CDK inhibitors possess the potential for developing as novel anticancer agents.


Author(s):  
Ajay Manaithiya ◽  
Ozair Alam ◽  
Vrinda Sharma ◽  
Mohd. Javed Naim ◽  
Shruti Mittal ◽  
...  

: Cancer is a heterogeneous disease characterized by an abnormal and uncontrolled division of the cells leading to tumors that invade the adjacent normal tissues. After cardiovascular diseases, it is the second most prevalent disease accounting for one in every six deaths worldwide. This alarming rate thus, demands an urgent need to investigate more effective drugs to combat the said disease. Oxygen and nitrogen-based heterocyclic compounds have shown remarkable therapeutic activity towards several diseases, including cancer. In this review, we have attempted to summarize the work done in the last decade (2009-2019), highlighting the anticancer activity of pyrido fused five-membered heterocyclic ring derivatives. Additionally, we have focused on seven heterocyclic pyridine fused rings: Imidazopyridine, Triazolopyridine, Pyrrolopyridine, Pyrazolopyridines, Thienopyridine, and Isoxazolopyridine. A total of forty-nine compounds have been studied based on their in-vitro cytotoxic activity and their structure-activity relationship, underlining the anticancer activity of their various pharmacophores and substituents. This review, therefore, aims to draw the attention of the researchers worldwide towards the enormous scope of development of heterocyclic drug compounds, focussing mainly on pyrido fused five-membered heterocyclic rings as anticancer drugs.


2020 ◽  
Vol 12 (1) ◽  
pp. 19-35 ◽  
Author(s):  
Dimitrios Trafalis ◽  
Panagiotis Dalezis ◽  
Elena Geromichalou ◽  
Sofia Sagredou ◽  
Eleni Sflakidou ◽  
...  

Aim: Steroidal prodrugs of nitrogen mustards such as estramustine and prednimustine have proven effective anticancer agents in clinical use since the 1970s. In this work, we aimed to develop steroidal prodrugs of the novel nitrogen mustard POPAM-NH2. POPAM-NH2 is a melphalan analogue that was coupled with three different steroidal lactams. Methodology: The new conjugates were preclinically tested for anticancer activity against nine human and one rodent cancer experimental models, in vitro and in vivo. Results & conclusion: All the steroidal alkylators showed high antitumor activity, in vitro and in vivo, in the experimental systems tested. Moreover, these hybrid compounds showed by far superior anticancer activity compared with the alkylating agents, melphalan and POPAM-NH2.


2019 ◽  
Vol 16 (1) ◽  
pp. 160-164 ◽  
Author(s):  
Stanislav A. Grabovskiy ◽  
Rinat S. Muhammadiev ◽  
Lenar R. Valiullin ◽  
Ivan S. Raginov ◽  
Natalie N. Kabal'nova

Aim and Objective: Some ferrocenyl derivatives are active in vitro and in vivo against cancer. Generally, ferrocenyl derivatives for cancer research have three key components: a ferrocene moiety, a conjugated linker that lowers the oxidation potential and some derivative (peptide, nucleobase and others) that can interact with biomolecules. Since the pyrimidine fragment can easily pass through the membrane into the cells and become involved in metabolism; it appears to be promising. Furthermore, this fragment is an electron-acceptor group, so a spacer can be excluded. Therefore, the synthesis of 6-ferrocenylpyrimidin-4(3H)-one derivatives and the study of their anticancer activity have scientific and practical interest. </P><P> Methods: The syntheses of 6-ferrocenylpyrimidin-4(3H)-one derivatives were performed by the condensation of ethyl 3-ferrocenyl-3-oxopropionate with thiourea or acetamidine or guanidine. The cytotoxicity of four 6- ferrocenylpyrimidin-4(3H)-one derivatives was evaluated by using the MTT assay in vitro against Human breast adenocarcinoma MCF-7 and normal human skin fibroblast HSF cells. The tested derivatives induced a concentration-dependent cytotoxic response in cell lines. </P><P> Results: A study of the cytotoxic activity of 6-ferrocenylpyrimidin-4(3H)-one derivatives by the MTT test has found that all compounds have a dose-dependent toxic effect on the lines of breast cancer cells (MCF-7) and normal human fibroblast cells (HSF). The most pronounced cytotoxic effect is exhibited by 2-methyl-6-ferrocenylpyrimidin- 4(3H)-one (MCF-7, IC50 17 ± 1 µM). Conclusion: The experimental results confirm the importance of investigation and design of ferrocenylpyrimidin- 4(3H)-one derivatives as anticancer agents. Compounds where the pyrimidine derivatives are directly linked to the ferrocene unit rather than via a spacer group also may be of interest for antiproliferative drug design.


Sign in / Sign up

Export Citation Format

Share Document