scholarly journals A healthy gut for a healthy brain: preclinical, clinical and regulatory aspects

Author(s):  
Carla Petrella ◽  
Stefano Farioli-Vecchioli ◽  
Giusy Ylenia Cisale ◽  
Georgios Strimpakos ◽  
John Joseph Borg ◽  
...  

: A large body of research has shown the presence of a complex pathway of communications between the gut and the brain. It is now recognized that, through this pathway, the microbiota can influence brain homeostasis and plasticity under normal and pathological conditions. This review aims at providing an overview of preclinical and clinical pieces of evidence supporting the possible role of gutbrain axis modulation in physiological aging, in a neurodevelopmental disorder, the autism spectrum disorders and in a substance abuse disorder, the alcohol addiction. Since the normalization of gut flora can prevent changes in the behavior, we postulate that the gut-brain axis might represent a possible target for pharmacological and dietary strategies aimed at improving not only intestinal but also mental health. The present review also reports some regulatory considerations regarding the use of probiotics, illustrating the most debated issues about the possibility of considering probiotics not only as a food supplement but also as a “full” medicinal product.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Reymundo Lozano ◽  
Catherine Gbekie ◽  
Paige M. Siper ◽  
Shubhika Srivastava ◽  
Jeffrey M. Saland ◽  
...  

AbstractFOXP1 syndrome is a neurodevelopmental disorder caused by mutations or deletions that disrupt the forkhead box protein 1 (FOXP1) gene, which encodes a transcription factor important for the early development of many organ systems, including the brain. Numerous clinical studies have elucidated the role of FOXP1 in neurodevelopment and have characterized a phenotype. FOXP1 syndrome is associated with intellectual disability, language deficits, autism spectrum disorder, hypotonia, and congenital anomalies, including mild dysmorphic features, and brain, cardiac, and urogenital abnormalities. Here, we present a review of human studies summarizing the clinical features of individuals with FOXP1 syndrome and enlist a multidisciplinary group of clinicians (pediatrics, genetics, psychiatry, neurology, cardiology, endocrinology, nephrology, and psychology) to provide recommendations for the assessment of FOXP1 syndrome.


2018 ◽  
Vol 17 (4) ◽  
pp. 281-286 ◽  
Author(s):  
Olga V. Kostina

The review presents an analysis of the mechanisms of iron effect on the brain development. The importance of iron deficiency in the perinatal period is considered as a risk factor for the development of neuropsychiatric disorders in children with autism spectrum disorders (ASDs). Possible causes of sideropenia are discussed; data on haematological and biochemical parameters characterizing iron metabolism in children with ASDs are presented. The demand for studying the role of iron metabolism imbalance in the development of neuropsychiatric disorders in order to clarify pathogenetic mechanisms of ASDs and to determine methods for their correction is emphasized.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Annamaria Srancikova ◽  
Zuzana Bacova ◽  
Jan Bakos

Abstract Epigenetic mechanisms greatly affect the developing brain, as well as the maturation of synapses with pervasive, long-lasting consequences on behavior in adults. Substantial evidence exists that implicates dysregulation of epigenetic mechanisms in the etiology of neurodevelopmental disorders. Therefore, this review explains the role of enzymes involved in DNA methylation and demethylation in neurodevelopment by emphasizing changes of synaptic genes and proteins. Epigenetic causes of sex-dependent differences in the brain are analyzed in conjunction with the pathophysiology of autism spectrum disorders. Special attention is devoted to the epigenetic regulation of the melanoma-associated antigen-like gene 2 (MAGEL2) found in Prader-Willi syndrome, which is known to be accompanied by autistic symptoms.


2019 ◽  
Vol 8 (10) ◽  
pp. 1588
Author(s):  
Yunho Jin ◽  
Jeonghyun Choi ◽  
Seunghoon Lee ◽  
Jong Won Kim ◽  
Yonggeun Hong

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is accompanied by social deficits, repetitive and restricted interests, and altered brain development. The majority of ASD patients suffer not only from ASD itself but also from its neuropsychiatric comorbidities. Alterations in brain structure, synaptic development, and misregulation of neuroinflammation are considered risk factors for ASD and neuropsychiatric comorbidities. Electroencephalography has been developed to quantitatively explore effects of these neuronal changes of the brain in ASD. The pineal neurohormone melatonin is able to contribute to neural development. Also, this hormone has an inflammation-regulatory role and acts as a circadian key regulator to normalize sleep. These functions of melatonin may play crucial roles in the alleviation of ASD and its neuropsychiatric comorbidities. In this context, this article focuses on the presumable role of melatonin and suggests that this hormone could be a therapeutic agent for ASD and its related neuropsychiatric disorders.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Nanako Hamada ◽  
Hidenori Ito ◽  
Takuma Nishijo ◽  
Ikuko Iwamoto ◽  
Rika Morishita ◽  
...  

2021 ◽  
Vol 10 (11) ◽  
pp. 2358
Author(s):  
Maria Grazia Giovannini ◽  
Daniele Lana ◽  
Chiara Traini ◽  
Maria Giuliana Vannucchi

The microbiota–gut system can be thought of as a single unit that interacts with the brain via the “two-way” microbiota–gut–brain axis. Through this axis, a constant interplay mediated by the several products originating from the microbiota guarantees the physiological development and shaping of the gut and the brain. In the present review will be described the modalities through which the microbiota and gut control each other, and the main microbiota products conditioning both local and brain homeostasis. Much evidence has accumulated over the past decade in favor of a significant association between dysbiosis, neuroinflammation and neurodegeneration. Presently, the pathogenetic mechanisms triggered by molecules produced by the altered microbiota, also responsible for the onset and evolution of Alzheimer disease, will be described. Our attention will be focused on the role of astrocytes and microglia. Numerous studies have progressively demonstrated how these glial cells are important to ensure an adequate environment for neuronal activity in healthy conditions. Furthermore, it is becoming evident how both cell types can mediate the onset of neuroinflammation and lead to neurodegeneration when subjected to pathological stimuli. Based on this information, the role of the major microbiota products in shifting the activation profiles of astrocytes and microglia from a healthy to a diseased state will be discussed, focusing on Alzheimer disease pathogenesis.


2021 ◽  
Vol 7 (11) ◽  
pp. eaba1187
Author(s):  
Rina Baba ◽  
Satoru Matsuda ◽  
Yuuichi Arakawa ◽  
Ryuji Yamada ◽  
Noriko Suzuki ◽  
...  

Persistent epigenetic dysregulation may underlie the pathophysiology of neurodevelopmental disorders, such as autism spectrum disorder (ASD). Here, we show that the inhibition of lysine-specific demethylase 1 (LSD1) enzyme activity normalizes aberrant epigenetic control of gene expression in neurodevelopmental disorders. Maternal exposure to valproate or poly I:C caused sustained dysregulation of gene expression in the brain and ASD-like social and cognitive deficits after birth in rodents. Unexpectedly, a specific inhibitor of LSD1 enzyme activity, 5-((1R,2R)-2-((cyclopropylmethyl)amino)cyclopropyl)-N-(tetrahydro-2H-pyran-4-yl)thiophene-3-carboxamide hydrochloride (TAK-418), almost completely normalized the dysregulated gene expression in the brain and ameliorated some ASD-like behaviors in these models. The genes modulated by TAK-418 were almost completely different across the models and their ages. These results suggest that LSD1 enzyme activity may stabilize the aberrant epigenetic machinery in neurodevelopmental disorders, and the inhibition of LSD1 enzyme activity may be the master key to recover gene expression homeostasis. TAK-418 may benefit patients with neurodevelopmental disorders.


2021 ◽  
Vol 168 ◽  
pp. 138-145
Author(s):  
Yuan-Mei Wang ◽  
Ming-Yue Qiu ◽  
Qing Liu ◽  
Huang Tang ◽  
Hong-Feng Gu

Sign in / Sign up

Export Citation Format

Share Document