In Silico Screening Reveals Histone Deacetylase 7 and ERK1/2 as Potential Targets for Artemisinin Dimer and Artemisinin Dimer Hemisuccinate

2020 ◽  
Vol 17 (5) ◽  
pp. 725-734
Author(s):  
Ahmed A. Ishola ◽  
Kayode E. Adewole

Background: Recent studies have observed overexpression of histone deacetylase 7 (HDAC7) and overactivity of extracellular signal-regulated kinases 1/2 (ERK1/2) in many tumors; therefore, pharmacological interventions to inhibit overexpression of HDAC7 and overactivity of ERK1/2 in cancerous cells holds great promise in cancer treatment. The promising anticancer properties of artemisinin and artemisinin-derivatives (ARTs) have been validated by various experimental reports, including advanced pre-clinical trials. Objective: Our aim in this in silico study is to identify additional inhibitors of HDAC7, ERK1 and ERK2 as potential anticancer drug agents and provide insight into the molecular level of interactions of such ligands relative to known standards. Methods: To achieve this aim, the binding affinities of ulixertinib (the standard ERK inhibitor), apicidin (the standard HDAC7 inhibitor) as well as 49 ARTs for HDAC7, ERK1 and ERK2 were evaluated using AutodockVina. The molecular binding interactions of compounds with remarkable binding affinity for all the 3 target proteins, relative to their respective standards, were viewed with Discovery Studio Visualizer, BIOVIA, 2016. Results: Out of the 49 ARTs, our study identified 2 compounds, artemisinin dimer and artemisinin dimer hemisuccinate, as having higher binding affinities for all the target proteins compared to their respective standard inhibitors. Conclusion: These findings suggest that artemisinin dimer and artemisinin dimer hemisuccinate could be promising anticancer drug agents, with better therapeutic efficacy than ulixertinib and apicidin for the treatment of cancer via inhibition of HDAC7, ERK1 and ERK2.

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3996
Author(s):  
Mohd Saeed ◽  
Ambreen Shoaib ◽  
Munazzah Tasleem ◽  
Nadiyah M. Alabdallah ◽  
Md Jahoor Alam ◽  
...  

Diabetes mellitus is a multifactorial disease that affects both developing and developed countries and is a major public health concern. Many synthetic drugs are available in the market, which counteracts the associated pathologies. However, due to the propensity of side effects, there is an unmet need for the investigation of safe and effective drugs. This research aims to find a novel phytoconstituent having diminished action on blood glucose levels with the least side effects. Shikonin is a naturally occurring naphthoquinone dying pigment obtained by the roots of the Boraginaceae family. Besides its use as pigments, it can be used as an antimicrobial, anti-inflammatory, and anti-tumor agent. This research aimed to hypothesize the physicochemical and phytochemical properties of Shikonin’s in silico interaction with protein tyrosine phosphate 1B, as well as it’s in vitro studies, in order to determine its potential anti-diabetic impact. To do so, molecular docking experiments with target proteins were conducted to assess their anti-diabetic ability. Analyzing associations with corresponding amino acids revealed the significant molecular interactions between Shikonin and diabetes-related target proteins. In silico pharmacokinetics and toxicity profile of Shikonin using ADMET Descriptor, Toxicity Prediction, and Calculate Molecular Properties tools from Biovia Discovery Studio v4.5. Filter by Lipinski and Veber Rule’s module from Biovia Discovery Studio v4.5 was applied to assess the drug-likeness of Shikonin. The in vitro studies exposed that Shikonin shows an inhibitory potential against the PTP1B with an IC50 value of 15.51 µM. The kinetics studies revealed that it has a competitive inhibitory effect (Ki = 7.5 M) on the enzyme system, which could be useful in the production of preventive and therapeutic agents. The findings of this research suggested that the Shikonin could be used as an anti-diabetic agent and can be used as a novel source for drug delivery.


2020 ◽  
Vol 20 (4) ◽  
pp. 899
Author(s):  
Sophi Damayanti ◽  
Nadiyah Athifah Salim Martak ◽  
Benny Permana ◽  
Adi Suwandi ◽  
Rika Hartati ◽  
...  

Red bulbs of Eleutherine americana (Aubl.) Merr. ex K. Heyne has been known for its high content of naphthoquinones that have antifungal and antiparasitic activities. In this research, in silico interaction study was performed between 31 compounds reported to be found in E. americana with the selected target proteins for antifungal and antitoxoplasmosis activity using the molecular docking method. An ORPs (OSBP-related proteins), Osh4 (PDB ID: 1ZHX), and N-myristoyltransferase (Nmt, PDB ID: 1IYL) were used as the antifungal target proteins. Toxoplasma gondii purine nucleoside phosphorylase (TgPNP, PDB ID: 3MB8) and calcium-dependent protein kinase-1 (TgCDPK1, PDB ID: 4M84) were used as antitoxoplasmosis target proteins. Three-dimensional structures of the test compounds were made and optimized using GaussView 6.0 and Gaussian 09W. The target proteins were prepared using the Discovery Studio 2016 Program. Aquatic toxicity prediction as the preliminary assessment of the safety of the compounds was performed using ECOSAR v2.0. The results suggest that the compound having both the smallest free binding energy compared with positive control and other test compounds and low predicted toxicity is β-sitosterol with a free binding energy of ‒11.55 and ‒11.18 kcal/mol towards Osh4 and Nmt and ‒8.06 and ‒10.29 kcal/mol towards TgPNP and TgCDPK1, respectively.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Kayode E. Adewole ◽  
Ahmed A. Ishola ◽  
Blessing O. Omolaso

Abstract Overactivity of histone deacetylases (HDACs) is the underlying cause of some cancers, thus, inhibiting their overactivities is a rational treatment option. However, endeavors to employ current anti-HDACs agents in cancer treatment have yielded limited success. Consequently, there is need to explore anti-HDACs natural products, especially from plants sources, because of the intimate relationship plant products and drug discovery have enjoyed over the centuries. To identify possible HDACs inhibitors, Garcinia kola (Guttiferae) seed-derived compounds were screened in silico for HDAC-inhibitory tendencies because of their reported anticancer potentials. Fifteen G. kola-derived compounds and givinostat were docked with five selected HDACs using AutodockVina, while the binding interactions of the compounds with high binding affinities for the five HDACs were viewed with Discovery Studio Visualizer BIOVIA, 2016. Results indicated that four of the compounds studied, including amentoflavone, Garcinia biflavonoid 1, Garcinia biflavonoid 2 and kolaflavanone have higher binding propensity for all the five HDACs relative to givinostat, the standard HDAC inhibitor. This study indicated that inhibition of HDAC might be another key mechanism accountable for the bioactivities of G. kola and its intrinsic compounds. The results from this study implied that the compounds could be further investigated as drugable HDAC inhibitors with potential pharmacological applications in the treatment of cancers.


Author(s):  
Jaynthy C. ◽  
N. Premjanu ◽  
Abhinav Srivastava

Cancer is a major disease with millions of patients diagnosed each year with high mortality around the world. Various studies are still going on to study the further mechanisms and pathways of the cancer cell proliferation. Fucosylation is one of the most important oligosaccharide modifications involved in cancer and inflammation. In cancer development increased core fucosylation by FUT8 play an important role in cell proliferation. Down regulation of FUT8 expression may help cure lung cancer. Therefore the computational study based on the down regulation mechanism of FUT8 was mechanised. Sapota fruit extract, containing 4-Ogalloylchlorogenic acid was used as the inhibitor against FUT-8 as target and docking was performed using in-silico tool, Accelrys Discovery Studio. There were several conformations of the docked result, and conformation 1 showed 80% dock score between the ligand and the target. Further the amino acids of the inhibitor involved in docking were studied using another tool, Ligplot. Thus, in-silico analysis based on drug designing parameters shows that the fruit extract can be studied further using in-vitro techniques to know its pharmacokinetics.


2020 ◽  
Vol 23 (2) ◽  
pp. 126-140 ◽  
Author(s):  
Christophe Tratrat

Aims and Objective: The infectious disease treatment remains a challenging concern owing to the increasing number of pathogenic microorganisms associated with resistance to multiple drugs. A promising approach for combating microbial infection is to combine two or more known bioactive heterocyclic pharmacophores in one molecular platform. Herein, the synthesis and biological evaluation of novel thiazole-thiazolidinone hybrids as potential antimicrobial agents were dissimilated. Materials and Methods: The preparation of the substituted 5-benzylidene-2-thiazolyimino-4- thiazolidinones was achieved in three steps from 2-amino-5-methylthiazoline. All the compounds have been screened in PASS antibacterial activity prediction and in a panel of bacteria and fungi strains. Minimum inhibitory concentration and minimum bacterial concentration were both determined by microdilution assays. Molecular modeling was conducted using Accelrys Discovery Studio 4.0 client. ToxPredict (OPEN TOX) and ProTox were used to estimate the toxicity of the title compounds. Results: PASS prediction revealed the potentiality antibacterial property of the designed thiazolethiazolidinone hybrids. All tested compounds were found to kill and to inhibit the growth of a vast variety of bacteria and fungi, and were more potent than the commercial drugs, streptomycin, ampicillin, bifomazole and ketoconazole. Further, in silico study was carried out for prospective molecular target identification and revealed favorable interaction with the target enzymes E. coli MurB and CYP51B of Aspergillus fumigatus. Toxicity prediction revealed that none of the active compounds was found toxic. Conclusion: Substituted 5-benzylidene-2-thiazolyimino-4-thiazolidinones, endowing remarkable antibacterial and antifungal properties, were identified as a novel class of antimicrobial agents and may find a potential therapeutic use to eradicate infectious diseases.


Author(s):  
Shikha Sharma ◽  
Shweta Sharma ◽  
Vaishali Pathak ◽  
Parwinder Kaur ◽  
Rajesh Kumar Singh

Aim: To investigate and validate the potential target proteins for drug repurposing of newly FDA approved antibacterial drug. Background: Drug repurposing is the process of assigning indications for drugs other than the one(s) that they were initially developed for. Discovery of entirely new indications from already approved drugs is highly lucrative as it minimizes the pipeline of the drug development process by reducing time and cost. In silico driven technologies made it possible to analyze molecules for different target proteins which are not yet explored. Objective: To analyze possible targets proteins for drug repurposing of lefamulin and their validation. Also, in silico prediction of novel scaffolds from lefamulin has been performed for assisting medicinal chemists in future drug design. Methods: A similarity-based prediction tool was employed for predicting target protein and further investigated using docking studies on PDB ID: 2V16. Besides, various in silico tools were employed for prediction of novel scaffolds from lefamulin using scaffold hopping technique followed by evaluation with various in silico parameters viz., ADME, synthetic accessibility and PAINS. Results: Based on the similarity and target prediction studies, renin is found as the most probable target protein for lefamulin. Further, validation studies using docking of lefamulin revealed the significant interactions of lefamulin with the binding pocket of the target protein. Also, three novel scaffolds were predicted using scaffold hopping technique and found to be in the limit to reduce the chances of drug failure in the physiological system during the last stage approval process. Conclusion: To encapsulate the future perspective, lefamulin may assist in the development of the renin inhibitors and, also three possible novel scaffolds with good pharmacokinetic profile can be developed into both as renin inhibitors and for bacterial infections.


2019 ◽  
Vol 15 (2) ◽  
pp. 257-267 ◽  
Author(s):  
Paritosh Shukla ◽  
Ashok Sharma ◽  
Leena Fageria ◽  
Rajdeep Chowdhury

Background: Cancer being a deadly disease, many reports of new chemical entities are available. Pyranopyrazole (PPZ) compounds have also been disclosed as bioactive molecules but mainly as antimicrobial agents. Based on one previous report and our interest in anticancer drug design, we decided to explore PPZs as anticancer agents. To the best of our knowledge, we found that a comprehensive study, involving synthesis, in-vitro biological activity determination, exploration of the mechanism of inhibition and finally in-silico docking studies, was missing in earlier reports. This is what the present study intends to accomplish. Methods: Ten spiro and eleven non-spiro PPZ molecules were synthesized by environment-friendly multicomponent reaction (MCR) strategy. After subjecting each of the newly synthesized molecules to Hep3b hepatocellular carcinoma cell lines assay, we selectively measured the Optical Density (OD) of the most active ones. Then, the compound exhibiting the best activity was docked against human CHK- 1 protein to get an insight into the binding affinities and a quick structure activity relationship (SAR) of the PPZs. Results: The two series of spiro and non-spiro PPZs were easily synthesized in high yields using microwave assisted synthesis and other methods. Among the synthesized compounds, most compounds showed moderate to good anticancer activity against the MTT assay. After performing the absorbance studies we found that the non-spiro molecules showed better apoptosis results and appeared to bind to DNA causing disruption in their structures. Finally, the docking results of compound 5h (having N,Ndimethylamino substituted moiety) clearly showed good binding affinities as predicted by our experimental findings. Conclusion: The paper describes a comprehensive synthesis, in-vitro and docking studies done on new PPZs. The newly synthesized series of spiro and non-spiro PPZs were found to possess antineoplasmic activity as evinced by the studies on hep3b cells. Also, the UV visible absorbance study gave clues to the possible binding of these molecules to the DNA. Docking studies corroborated well with the experimental results. Thus, these new molecules appear to be potential anticancer agents, but further studies are required to substantiate and elaborate on these findings.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 460
Author(s):  
Amr El-Demerdash ◽  
Ahmed M. Metwaly ◽  
Afnan Hassan ◽  
Tarek Mohamed Abd El-Aziz ◽  
Eslam B. Elkaeed ◽  
...  

The huge global expansion of the COVID-19 pandemic caused by the novel SARS-corona virus-2 is an extraordinary public health emergency. The unavailability of specific treatment against SARS-CoV-2 infection necessitates the focus of all scientists in this direction. The reported antiviral activities of guanidine alkaloids encouraged us to run a comprehensive in silico binding affinity of fifteen guanidine alkaloids against five different proteins of SARS-CoV-2, which we investigated. The investigated proteins are COVID-19 main protease (Mpro) (PDB ID: 6lu7), spike glycoprotein (PDB ID: 6VYB), nucleocapsid phosphoprotein (PDB ID: 6VYO), membrane glycoprotein (PDB ID: 6M17), and a non-structural protein (nsp10) (PDB ID: 6W4H). The binding energies for all tested compounds indicated promising binding affinities. A noticeable superiority for the pentacyclic alkaloids particularly, crambescidin 786 (5) and crambescidin 826 (13) has been observed. Compound 5 exhibited very good binding affinities against Mpro (ΔG = −8.05 kcal/mol), nucleocapsid phosphoprotein (ΔG = −6.49 kcal/mol), and nsp10 (ΔG = −9.06 kcal/mol). Compound 13 showed promising binding affinities against Mpro (ΔG = −7.99 kcal/mol), spike glycoproteins (ΔG = −6.95 kcal/mol), and nucleocapsid phosphoprotein (ΔG = −8.01 kcal/mol). Such promising activities might be attributed to the long ω-fatty acid chain, which may play a vital role in binding within the active sites. The correlation of c Log P with free binding energies has been calculated. Furthermore, the SAR of the active compounds has been clarified. The Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) studies were carried out in silico for the 15 compounds; most examined compounds showed optimal to good range levels of ADMET aqueous solubility, intestinal absorption and being unable to pass blood brain barrier (BBB), non-inhibitors of CYP2D6, non-hepatotoxic, and bind plasma protein with a percentage less than 90%. The toxicity of the tested compounds was screened in silico against five models (FDA rodent carcinogenicity, carcinogenic potency TD50, rat maximum tolerated dose, rat oral LD50, and rat chronic lowest observed adverse effect level (LOAEL)). All compounds showed expected low toxicity against the tested models. Molecular dynamic (MD) simulations were also carried out to confirm the stable binding interactions of the most promising compounds, 5 and 13, with their targets. In conclusion, the examined 15 alkaloids specially 5 and 13 showed promising docking, ADMET, toxicity and MD results which open the door for further investigations for them against SARS-CoV-2.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1257
Author(s):  
Fareena Shahid ◽  
Noreen ◽  
Roshan Ali ◽  
Syed Lal Badshah ◽  
Syed Babar Jamal ◽  
...  

Hepatitis C is affecting millions of people around the globe annually, which leads to death in very high numbers. After many years of research, hepatitis C virus (HCV) remains a serious threat to the human population and needs proper management. The in silico approach in the drug discovery process is an efficient method in identifying inhibitors for various diseases. In our study, the interaction between Epigallocatechin-3-gallate, a component of green tea, and envelope glycoprotein E2 of HCV is evaluated. Epigallocatechin-3-gallate is the most promising polyphenol approved through cell culture analysis that can inhibit the entry of HCV. Therefore, various in silico techniques have been employed to find out other potential inhibitors that can behave as EGCG. Thus, the homology modelling of E2 protein was performed. The potential lead molecules were predicted using ligand-based as well as structure-based virtual screening methods. The compounds obtained were then screened through PyRx. The drugs obtained were ranked based on their binding affinities. Furthermore, the docking of the topmost drugs was performed by AutoDock Vina, while its 2D interactions were plotted in LigPlot+. The lead compound mms02387687 (2-[[5-[(4-ethylphenoxy) methyl]-4-prop-2-enyl-1,2,4-triazol-3-yl] sulfanyl]-N-[3(trifluoromethyl) phenyl] acetamide) was ranked on top, and we believe it can serve as a drug against HCV in the future, owing to experimental validation.


Sign in / Sign up

Export Citation Format

Share Document