Therapeutic Anti-Tumor Immunity Mediated by Transiently Engrafting Allogeneic Lymphocytes: The “Allogeneic Effect” Revisited.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5255-5255
Author(s):  
Heather J. Symons ◽  
M. Yair Levy ◽  
Jie Wang ◽  
Xiaotao Zhou ◽  
Ephraim J. Fuchs

Abstract The “allogeneic effect” refers to the induction of host B cell antibody synthesis or host T cell cytotoxicity, including tumoricidal activity, by an infusion of allogeneic lymphocytes. We have previously shown that treatment of mice with cyclophosphamide (Cy) followed by infusion of CD8+ T cell-depleted allogeneic spleen cells (Cy + CD8− DLI) induces anti-tumor activity in a model of minimal residual leukemia, even though the donor cells are eventually rejected by the host immune system. The purpose of the current investigation was to test the activity of Cy + CD8− DLI in the treatment of well-established cancer, and to characterize the mechanisms of the anti-tumor effect. BALB/c mice were inoculated intravenously (IV) with the syngeneic A20 lymphoma/leukemia or the RENCA renal cell carcinoma on day 0 and were then treated with nothing, Cy alone on day 14, or Cy + CD8− DLI from MHC-mismatched C57BL/6 donors on day 15. In both tumor models, the combination of Cy + CD8− DLI significantly prolonged survival compared to mice treated with nothing or with Cy alone. While depletion of CD4+ T cells from the DLI significantly diminished the beneficial effect of CD8− DLI, purified CD4+ T cells alone were inactive, demonstrating that donor CD4+ T cells and another population of cells were required for optimal anti-tumor activity. Several observations pointed to an active role for the host immune system in the anti-tumor activity of Cy + CD8− DLI. First, host T cells participated in the anti-tumor effect of treatment with Cy alone, since the drug’s activity was diminished in tumor-bearing scid mice or in normal BALB/c mice depleted of T cells. Second, while Cy + CD8− DLI caused no GVHD in tumor-bearing but immunocompetent BALB/c recipients, it caused fatal acute GVHD in either tumor-bearing scid or T-cell depleted BALB/c mice. Finally, the anti-tumor effect of Cy + CD8- DLI was also significantly inhibited in BALB/c mice that were depleted of CD8+ T cells. These results demonstrate that transiently engrafting T cells administered after Cy can induce significant anti-tumor effects against both solid and liquid tumors. We propose that upon recognition of alloantigen on host antigen-presenting cells (APCs), allogeneic donor CD4+ T cells deliver activating ligands to the APCs, thereby generating effective “help” to break tolerance in tumor-specific host CD8+ T cells. This mechanism may correspond to the “allogeneic effect” in the anti-tumor response described over three decades ago.

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A802-A802
Author(s):  
Donghwan Jeon ◽  
Douglas McNeel

BackgroundT-cell checkpoint receptors are expressed when T-cell are activated, and activation of these receptors can impair the function of T-cells and their anti-tumor efficacy.1 We previously found that T-cells activated with cognate antigen increase the expression of PD-1, while this can be attenuated by the presence of specific Toll-like receptor (TLR) agonists.2 3 This effect was mediated by IL-12 secretion from professional antigen presenting cells and resulted in CD8+ T cells with greater anti-tumor activity. In the current report, we sought to determine whether combination of TLR agonists can further affect the expression of T-cell checkpoint receptors and improve T-cell anti-tumor immunity.MethodsOT-1 CD8+ T cells were stimulated with peptide (SIINFEKL) and dendritic cells (DC) in the presence of two different TLR agonists. The cells were collected and evaluated for the expression of T-cell checkpoint receptors (PD-1, CTLA-4, CD160, CD244, LAG-3, TIM-3, TIGIT and VISTA) by flow cytometry, and for transcriptional changes by RNA-seq. Purified DC were stimulated with TLR combinations and evaluated for cytokine release by ELISA. The anti-tumor efficacy of vaccination using peptide and TLR agonist combinations was evaluated in EG7-OVA tumor-bearing mice.ResultsActivation of CD8+ T cells in the presence of specific TLR ligands resulted in decreases in expression of PD-1 and/or CD160. These changes in T-cell checkpoint receptor expression were modestly affected when TLR ligands were used in combination, and notably with combinations of TLR1/2, TLR3, and TLR9 agonists. Immunization of tumor-bearing mice, co-administered with combinations of these agonists, showed greater anti-tumor effects. However, while the effect of TLR1/2 and/or TLR9 was abrogated in IL12KO mice, TLR3 demonstrated anti-tumor activity when co-administered with peptide vaccine. RNA sequencing of TLR-conditioned CD8+ T-cells revealed IL-12 pathway activation, and IFNß pathway activation following TLR3 stimulation. Stimulation of DC with TLR3 agonist, alone or in combination with other TLR agonists, resulted in increased IL-12 and IFNß secretion. Co-incubation of OT-1 splenocytes with rIL12 and/or rIFNß during peptide activation led to reduced expression of PD-1, and this could be reversed with antibodies blocking IL12R or IFNAR-1.ConclusionsMultiple TLR agonists can modulate the expression of T-cell checkpoint receptors, notably PD-1, by upregulating the secretion of IL-12 and IFNß. These data provide the mechanistic rationale for choosing optimal combinations of TLR ligands to use as adjuvants to improve the efficacy of anti-tumor vaccines.ReferencesJin H-T, et al. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proceedings of the National Academy of Sciences 2010;107(33):14733–14738.Zahm CD, Colluru VT, McNeel DG. Vaccination with high-affinity epitopes impairs antitumor efficacy by increasing PD-1 expression on CD8+ T cells. Cancer Immunology Research 2017;5(8):630–641.Zahm CD, et al. TLR stimulation during T-cell activation lowers PD-1 expression on CD8+ T Cells. Cancer Immunology Research 2018;6(11):1364–1374.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3175-3175
Author(s):  
Sanju Jalla ◽  
Erin McCadden ◽  
Jie Wang ◽  
Ephraim J. Fuchs ◽  
Katharine A. Whartenby

Abstract Since CD4+ T cell help has been proposed to be required for maintaining the activity of tumor-specific CD8+ T cells, tolerance in tumor-specific CD4+ T cells may seriously impair the efficacy of therapeutic tumor vaccines. To overcome this problem, we devised a strategy to “engineer” CD4+ T cell help by treating tumor-bearing animals with nonmyeloablative conditioning and transplantation of autologous hematopoietic stem cells (HSCs) that have been genetically modified, via lentiviral transduction, to express an antigen containing “foreign” CD4+ T cell epitopes. After hematopoietic reconstitution, animals received the combination of an autologous tumor cell vaccine and an infusion of primed CD4+ T cells specific for the expressed epitopes. Using influenza hemagglutinin (HA) as the model antigen, we first confirmed that transplantation of HA-transduced HSCs led to efficient expression of HA by antigen-presenting cells, as demonstrated by the clonal expansion of adoptively transferred, HA-specific CD4+ transgenic T cells in mice receiving HA-transduced HSCs but not in mice receiving nerve growth factor receptor (NGFR) gene-transduced HSCs. Next, BALB/c mice harboring 13 day old, metastatic 4T1 mammary cancer were treated with removal of the primary, nonmyeloablative conditioning and transplantation of HA-transduced syngeneic HSCs, and following hematopoietic reconstitution, with concomitant autologous tumor cell vaccination and adoptive transfer of in vitro activated, HA-specific transgenic CD4+ T cells. This therapy was successful in curing the majority of tumor bearing mice, and was superior to the same therapy given to mice transplanted with NGFR-transduced stem cells. Finally, we found that the anti-tumor effect of vaccination plus exogenous T cell help was abolished by the adoptive transfer of either CD4+ or CD8+ T cells from tumor-bearing mice, suggesting that tumor-bearing mice contain both potential effectors and suppressors of anti-tumor immunity, the latter of which are abolished by the non-myeloablative conditioning. These results highlight the importance of CD4+ T cell help in the induction of therapeutic anti-tumor immunity.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1896-1896
Author(s):  
Holbrook E Kohrt ◽  
Antonia MS Mueller ◽  
Jeanette B Baker ◽  
Matthew J Goldstein ◽  
Evan Newell ◽  
...  

Abstract Abstract 1896 The curative potential of MHC-matched allogeneic bone marrow transplantation (BMT) is in part due to immunologic graft-versus-tumor (GvT) reactions mediated by donor T cells that recognize host minor histocompatibility antigens. Immunization with leukemia-associated antigens, such as Wilm's Tumor 1 (WT1) peptides, induces a T cell population that is tumor antigen specific. We determined whether BMT combined with immunotherapy using WT1 peptide vaccination of donors induced more potent anti-tumor activity when combined with allotransplantation. WT1 peptide vaccinations of healthy syngeneic or allogeneic donor mice with a 9-mer WT1 peptide (amino acids 126–134, the WT1 9-mer which has the highest binding affinity for H-2Db) and Incomplete Freund's Adjuvant induced CD8+ T cells that were specifically reactive to WT1-expressing FBL3 leukemia cells. We found that compared to vaccination with IFA alone, four weekly WT1 vaccinations induced an increased percentage of WT1-tetramer+CD8 T-cells (0.15% vs. 1%) in the peripheral blood 28 days following the first vaccination (Figure A *p<.001). CD8 T-cells producing IFN-γ+ after co-culture with tumor cells were similarly increased (0.11% vs. 13.6%) at this timepoint (Figure B *p<.001). They were CD44hi suggesting a memory phenotype, specifically reactive to WT1-expressing tumor (FBL3 and not H11), and increased in a vaccination dose-dependent fashion (Figure A and B). Four weekly WT1 vaccinations prevented tumor growth in donors following intravenous leukemia challenge. In contrast, in tumor-bearing mice, WT1 vaccinations failed to induce WT1-tetramer+ or IFN-γ+ CD8 T-cells and were ineffective as a therapeutic vaccine based on intensity of bioluminescence from luciferase-labeled FBL3 leukemia and mortality. BMT from WT1 vaccinated MHC-matched donors including LP/J and C3H.SW, but not C57BL/6 syngeneic donors, into C57BL/6 recipient tumor-bearing mice was effective as a therapeutic maneuver and resulted in eradication of luciferase-labeled FBL3 leukemia and survival of 70–90% of mice. Interestingly, the transfer of total CD8+ T cells from immunized donors was more effective than the transfer of WT1-tetramer+CD8+ T cells, likely as a result of alloreactive and tumor-antigen reactive T cells contained with the donor total CD8+ T cells. Total and tetramer+CD8+ T cells required CD4+ T cell help for maximal anti-tumor activity, which was equivalent in efficacy from immunized or unimmunized CD4+ T cell donors. Total CD4+ T cells, alone, from immunized donors provided no anti-tumor activity. The infused donor LP/J or C3H.SW CD8+ T cells collected from cured C57BL/6 recipients, were highly reactive against WT1-expressing FBL3 leukemia cells (14% IFN-γ+) compared to non-WT1-expressing H11 leukemia cells (5% IFN-γ+). The circulating, WT1-tetramer+CD8+ T cell population expanded in cured recipients, peaking at 3.5% on day 50 and contracting through day 100 post-BMT to 0.56%. These findings show that peptide vaccination of donor mice with a tumor antigen dramatically enhances GvT activity and is synergistic with allogeneic BMT. This novel and broadly applicable approach, using leukemia-associated antigen immunization to enhance GvT by creating an “educated” donor T cell graft for allogeneic transplantation of patients with acute myeloid leukemia and myelodysplastic syndrome, is currently being translated to a Phase 1 clinical trial at our institution. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 17 ◽  
Author(s):  
Mehreen Ismail ◽  
Zureesha Sajid ◽  
Amjad Ali ◽  
Xiaogang Wu ◽  
Syed Aun Muhammad ◽  
...  

Background: Human Papillomavirus (HPV) is responsible for substantial morbidity and mortality worldwide. We predicted immunogenic promiscuous monovalent and polyvalent T-cell epitopes from the polyprotein of the Human Papillomavirus (HPV) using a range of bioinformatics tools and servers. Methods: We used immunoinformatics and reverse vaccinology-based approaches to design prophylactic peptides by antigenicity analysis, Tcell epitopes prediction, proteasomal and conservancy evaluation, host-pathogen protein interactions, and in silico binding affinity analysis. Results: We found two early proteins (E2 and E6) and two late proteins (L1 and L2) of HPV as potential vaccine candidates. Of these proteins (E2, E6, L1 & L2), 2-epitopes of each candidate protein for multiple alleles of MHC class I and II bearing significant binding affinity (>-6.0 kcal/mole). These potential epitopes for CD4+ and CD8+ T-cells were also linked to design polyvalent construct using GPGPG linkers. Cholera toxin B and mycobacterial heparin-binding hemagglutinin adjuvant with a molecular weight of 12.5 and 18.5 kDa were used for epitopes of CD4+ and CD8+ T-cells respectively. The molecular docking indicated the optimum binding affinity of HPV peptides with MHC molecules. This interaction showed that our predicted vaccine candidates are suitable to trigger the host immune system to prevent HPV infections. Conclusion: The predicted conserved T-cell epitopes would contribute to the imminent design of HPV vaccine candidates, which will be able to induce a broad range of immune-responses in a heterogeneous HLA population.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Stephanie M. Dillon ◽  
Tezha A. Thompson ◽  
Allison J. Christians ◽  
Martin D. McCarter ◽  
Cara C. Wilson

Abstract Background The etiology of the low-level chronic inflammatory state associated with aging is likely multifactorial, but a number of animal and human studies have implicated a functional decline of the gastrointestinal immune system as a potential driver. Gut tissue-resident memory T cells play critical roles in mediating protective immunity and in maintaining gut homeostasis, yet few studies have investigated the effect of aging on human gut T cell immunity. To determine if aging impacted CD4 T cell immunity in the human large intestine, we utilized multi-color flow cytometry to measure colonic lamina propria (LP) CD4 T cell frequencies and immune-modulatory marker expression in younger (mean ± SEM: 38 ± 1.5 yrs) and older (77 ± 1.6 yrs) adults. To determine cellular specificity, we evaluated colon LP CD8 T cell frequency and phenotype in the same donors. To probe tissue specificity, we evaluated the same panel of markers in peripheral blood (PB) CD4 T cells in a separate cohort of similarly aged persons. Results Frequencies of colonic CD4 T cells as a fraction of total LP mononuclear cells were higher in older persons whereas absolute numbers of colonic LP CD4 T cells per gram of tissue were similar in both age groups. LP CD4 T cells from older versus younger persons exhibited reduced CTLA-4, PD-1 and Ki67 expression. Levels of Bcl-2, CD57, CD25 and percentages of activated CD38+HLA-DR+ CD4 T cells were similar in both age groups. In memory PB CD4 T cells, older age was only associated with increased CD57 expression. Significant age effects for LP CD8 T cells were only observed for CTLA-4 expression, with lower levels of expression observed on cells from older adults. Conclusions Greater age was associated with reduced expression of the co-inhibitory receptors CTLA-4 and PD-1 on LP CD4 T cells. Colonic LP CD8 T cells from older persons also displayed reduced CTLA-4 expression. These age-associated profiles were not observed in older PB memory CD4 T cells. The decline in co-inhibitory receptor expression on colonic LP T cells may contribute to local and systemic inflammation via a reduced ability to limit ongoing T cell responses to enteric microbial challenge.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 813
Author(s):  
Norwin Kubick ◽  
Pavel Klimovich ◽  
Patrick Henckell Flournoy ◽  
Irmina Bieńkowska ◽  
Marzena Łazarczyk ◽  
...  

Understanding the evolution of interleukins and interleukin receptors is essential to control the function of CD4+ T cells in various pathologies. Numerous aspects of CD4+ T cells’ presence are controlled by interleukins including differentiation, proliferation, and plasticity. CD4+ T cells have emerged during the divergence of jawed vertebrates. However, little is known about the evolution of interleukins and their origin. We traced the evolution of interleukins and their receptors from Placozoa to primates. We performed phylogenetic analysis, ancestral reconstruction, HH search, and positive selection analysis. Our results indicated that various interleukins' emergence predated CD4+ T cells divergence. IL14 was the most ancient interleukin with homologs in fungi. Invertebrates also expressed various interleukins such as IL41 and IL16. Several interleukin receptors also appeared before CD4+ T cells divergence. Interestingly IL17RA and IL17RD, which are known to play a fundamental role in Th17 CD4+ T cells first appeared in mollusks. Furthermore, our investigations showed that there is not any single gene family that could be the parent group of interleukins. We postulate that several groups have diverged from older existing cytokines such as IL4 from TGFβ, IL10 from IFN, and IL28 from BCAM. Interleukin receptors were less divergent than interleukins. We found that IL1R, IL7R might have diverged from a common invertebrate protein that contained TIR domains, conversely, IL2R, IL4R and IL6R might have emerged from a common invertebrate ancestor that possessed a fibronectin domain. IL8R seems to be a GPCR that belongs to the rhodopsin-like family and it has diverged from the Somatostatin group. Interestingly, several interleukins that are known to perform a critical function for CD4+ T cells such as IL6, IL17, and IL1B have gained new functions and evolved under positive selection. Overall evolution of interleukin receptors was not under significant positive selection. Interestingly, eight interleukin families appeared in lampreys, however, only two of them (IL17B, IL17E) evolved under positive selection. This observation indicates that although lampreys have a unique adaptive immune system that lacks CD4+ T cells, they could be utilizing interleukins in homologous mode to that of the vertebrates' immune system. Overall our study highlights the evolutionary heterogeneity within the interleukins and their receptor superfamilies and thus does not support the theory that interleukins evolved solely in jawed vertebrates to support T cell function. Conversely, some of the members are likely to play conserved functions in the innate immune system.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A730-A730
Author(s):  
Wenqing Jiang ◽  
Zhengyi Wang ◽  
Zhen Sheng ◽  
Jaeho Jung ◽  
Taylor Guo

Background4-1BB (CD137) is a co-stimulatory receptor that stimulates the function of multiple immune cells. Its ability to induce potent anti-tumor activity makes 4-1BB an attractive target for immuno-oncology. However, clinical development of a monospecific 4-1BB agonistic antibody has been hampered by dose-limiting hepatic toxicities. To minimize systemic toxicities, we have developed a novel Claudin18.2 (CLDN18.2) x 4-1BB bispecific antibody, TJ-CD4B (ABL111) that stimulates 4-1BB pathway only when it engages with Claudin 18.2, a tumor-associated antigen specifically expressed in gastrointestinal cancers. TJ-CD4B (ABL111) is now being evaluated in patients with advanced solid tumors in a first-in-human trial (NCT04900818).MethodsTJ-CD4B (ABL111) was evaluated in vivo using the human 4-1BB knock-in mice bearing CLDN18.2 expressing MC38 tumor cells. Pharmacodynamic effects upon treatment were characterized in tumor tissue and blood. Immunophenotyping of the tumor microenvironment (TME) and peripheral blood was performed by flow cytometry. Soluble biomarkers were measured using Luminex-based multiplex assay. In-depth gene expression analysis was performed on primary human CD8+ T cells that were co-cultured with CLDN18.2 expressing cells in the presence of anti-CD3 using NanoString nCounter®. Pharmacokinetic (PK) and toxicity study were performed in cynomolgus monkeys.ResultsTJ-CD4B (ABL111) elicited complete tumor regression in 13 out of 18 MC38 tumor bearing mice given at a dose above 2 mg/kg. Dose-dependent anti-tumor activity was associated with enhanced T cell activation in TME and expansion of memory T cells in the peripheral blood. Increased CD8+ T cells number and proliferation were observed in both tumor nest and surrounding stroma while the level of soluble 4-1BB in the serum was also elevated in response to the treatment. In vitro gene expression analysis by Nanostring revealed TJ-CD4B(ABL111) effectively activated immune pathways characterized by IFN?-signaling and T cell inflammation. Preclinically, TJ-CD4B was well tolerated at the repeated doses up to 100 mg/kg/wk in cynomolgus monkeys without the adverse influence on the liver function which is generally affected by 4-1BB activation. Besides, no cytokine release or immune activation was observed in the periphery.ConclusionsTJ-CD4B (ABL111) is a novel CLDN18.2 dependent 4-1BB bispecific agonist antibody that induced T cell activation and memory response in tumor with CLDN18.2 expression, leading to a strong anti-tumor activity in vivo. TJ-CD4B did not induce systemic immune response nor hepatic toxicity due to the CLDN18.2 dependent 4-1BB stimulation. These data warrant the current clinical development in phase I trial to validate the safety properties and tumor specific responses.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A770-A770
Author(s):  
Michael Brown ◽  
Zachary McKay ◽  
Yuanfan Yang ◽  
Darell Bigner ◽  
Smita Nair ◽  
...  

BackgroundPVSRIPO, a recombinant poliovirus derived from the live-attenuated Sabin oral polio vaccine strain, is being tested in multi-institutional phase II clinical trials for recurrent glioblastoma (NCT04479241) and unresectable, PD-1 refractory melanoma (NCT04577807) in combination with PD1 blockade. PVSRIPO capsid is identical to the Sabin vaccine strain and >99% identical to the inactivated Polio vaccine (IPOL, Salk), against which public health mandated childhood vaccination is near universal. In non-vaccinated mice, PVSRIPO mediates antitumor efficacy in a replication-dependent manner via engaging innate inflammation and antitumor T cells. Accordingly, it is anticipated that pre-existing immunity to PVSRIPO impedes antitumor therapy. However, recent evidence indicates that immunological 'recall', or reactivation of memory T cells, may mediate anti-tumor effects.MethodsThe impact of prior polio vs control (KLH) vaccination on intratumor viral replication, tumor inflammation, and overall tumor growth after intratumor PVSRIPO therapy was assessed in murine tumor models. The role of polio capsid and tetanus recall antigens in mediating intratumor inflammation and antitumor efficacy was similarly studied in mice non-permissive to PVSRIPO infection. To mechanistically define antitumor effects of polio recall, B cell and CD8 T cell knockout mice were used, in addition to adoptive transfer of CD4+ T cells from vaccinated mice. Intratumor polio or tetanus recall antigen therapy was performed after OT-I transfer (OVA-specific T cells) in the B16-OVA melanoma model to gauge antitumor T cell activity. Lastly, the inflammatory effects of polio and tetanus antigens was tested in human peripheral blood mononuclear cells (PBMCs).ResultsDespite curtailing intratumor viral replication, prior polio vaccination in mice potentiated subsequent antitumor efficacy of PVSRIPO. Intratumor recall responses induced by polio and tetanus antigens also delayed tumor growth. Recall antigen therapy was associated with marked intratumor influx of eosinophils, conventional CD4+ T cells, and increased expression of IFN-g, TNF, and Granzyme B in tumor infiltrating T cells. The antitumor efficacy of polio recall antigen was mediated by CD4+ T cells, partially depended upon CD8+ T cells, and was impaired by B cells. Both polio and tetanus recall antigen therapy bolstered the antitumor function of tumor-specific OT-I CD8+ T cells. Polio and tetanus antigens induced CXCL10 and type I/II/III IFNs in PBMCs in vitro.ConclusionsChildhood vaccine-specific CD4+ T cells hold cancer immunotherapy potential. In the context of PVSRIPO therapy, antitumor and inflammatory effects of polio vaccine-specific CD4+ T cell recall supersedes inhibitory effects of attenuated intratumor viral replication, and represents a novel mechanism of action.Ethics ApprovalThe animal work described in this study was approved by the Duke University IACUC.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2233-2233
Author(s):  
Monera Al Rukhayes ◽  
Victoria T Potter ◽  
Pilar Perez-Abellan ◽  
Jesus Feliu ◽  
Lajos Floro ◽  
...  

Abstract Lymphocyte-depletion effectively reduces risk of graft versus host disease (GvHD) after allogeneic haematopoietic stem cell transplantation (allo-HSCT), but risk of infections and malignant disease relapse remains high. We have previously reported that pre-emptive donor lymphocyte infusions (pDLI) given to patients after allo-HSCT for myeloid malignancies to reverse falling donor T-cell chimerism improve overall and relapse-free survival. GvHD rates after pDLI were not high and grade rarely severe. To investigate the basis for better outcome after pDLI, we have assessed recovery of lymphocyte subsets, T-cell receptor (TCR) diversity and T-cell functional competence after allo-HSCT with fludarabine and busulphan in cohorts of 59 patients (median age 59) given alemtuzumab for lymphocyte-depletion and 34 patients (median age 58) given anti-thymocyte globulin (ATG). Lymphocytes were significantly less depleted with ATG compared to alemtuzumab (Day 30: Median 3.9 x 108/liter versus 2.3x108/liter, P=0.03) but numbers for both ATG and alemtuzumab remained significantly below the normal range (median 2.34x109/liter for 11 aged-matched healthy volunteers) for at least one year (Day 360 P<0.005: Median 8.35 x 108/liter after ATG; median 1.04 x 109/liter after alemtuzumab). Lymphocyte subset composition was similar after ATG or alemtuzumab, and abnormal. Notable, the T-cell population comprised only memory and effector T cells early after HSCT. These cells expressed significantly higher levels of Ki67 than T cells from healthy volunteers (Day 30 P<0.005: Median CD4 T cells 41.3% Ki67+ after ATG, 66% after alemtuzumab compared to 2.51% for healthy volunteers; median CD8 T cells 18.5% Ki67+ after ATG, 50.8% after alemtuzumab compared to 2.58% for healthy volunteers). This marker is indicative of homeostatic proliferation likely driven by increased levels of IL7 and IL15 detected in the serum of patients early after HSCT compared to healthy volunteers (Day 30 P=0.066 and P<0.005 respectively). Higher frequency of T cells expressing the proliferation marker in patients treated with alemtuzumab was associated with high frequencies of T cells expressing the PD1 marker, indicative of exhaustion (Day 30 P<0.005: Median CD4 T cells 84.0% PD1+ after alemtuzumab compared to 6.35% for healthy volunteers; median CD8 T cells 49.1% PD1+ after alemtuzumab compared to 12.3% for healthy volunteers). Expression of PD1 by T cells was near normal in patients treated with ATG. Naïve T cells were typically absent for at least six months after HSCT following lymphocyte depletion with ATG or alemtuzumab, and any subsequent recovery was poor. In contrast, the naïve T-cell population increased rapidly in patients after pDLI (n=18). Six of these patients received pDLI early after HSCT (at 3-5 months) and naïve T-cell recovery was significantly enhanced at six months compared to patients that did not receive pDLI (Day 180 P<0.005: Median 19.25% naïve CD4 T cells compared to 1.36%; median 23.5% naïve CD8 T cells compared to 3.48%). Naïve T cells are the main source of repertoire diversity and responsible for responses to antigens not previously encountered. Analysis of the TCR β chain repertoire of five patients by deep sequencing revealed that pDLI boosts repertoire diversity. For example, unique TCR β chain sequences increased 31-fold in 150 days after pDLI compared to a 2-fold increase during a similar period for another patient that did not receive DLI. Furthermore, instances of emergence of public clonotypes specific for CMV or EBV that were not detected before DLI were seen in virus-positive patients whose donors were virus-negative. Emergence and rapid expansion of donor-derived clonotypes to frequencies up to 6.75% suggests that naïve T cells present in the DLI had been primed upon encounter with virus in the patient. In vitro stimulation with overlapping 15-mer peptide libraries for CMV antigens and EBV antigens followed by assessment of activation marker expression and interferon-γ, MIP-1β, and TNF-α production showed that virus-specific T-cell responses increased in magnitude and poly-functionality after DLI. These findings show that DLI replenishes naïve T cells and restores ability to respond to viral antigens previously unseen. By inference, this may extend to leukaemia antigens and underlie the reduced rate of malignant disease relapse seen in patients given pDLI. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Maud Wilhelm ◽  
Amandeep Kaur ◽  
Marion Wernli ◽  
Hans H Hirsch

Abstract Background BK polyomavirus (BKPyV) remains a significant cause of premature kidney transplant failure. In the absence of effective antivirals, current treatments rely on reducing immunosuppression to regain immune control over BKPyV replication. Increasing BKPyV-specific CD8 T cells correlate with clearance of BKPyV DNAemia in kidney transplant patients. We characterized a novel approach for expanding BKPyV-specific CD8 T cells in vitro using 27mer-long synthetic BKPyV peptides, different types of antigen-presenting cells, and CD4 T cells. Methods Langerhans cells and immature or mature monocyte-derived dendritic cells (Mo-DCs) were generated from peripheral blood mononuclear cells of healthy blood donors, pulsed with synthetic peptide pools consisting of 36 overlapping 27mers (27mP) or 180 15mers (15mP). BKPyV-specific CD8 T-cell responses were assessed by cytokine release assays using 15mP or immunodominant 9mers. Results BKPyV-specific CD8 T cells expanded using 27mP and required mature Mo-DCs (P = .0312) and CD4 T cells (P = .0156) for highest responses. The resulting BKPyV-specific CD8 T cells proliferated, secreted multiple cytokines including interferon γ and tumor necrosis factor α, and were functional (CD107a+/PD1–) and cytotoxic. Conclusions Synthetic 27mP permit expanding BKPyV-specific CD8 T-cell responses when pulsing mature Mo-DCs in presence of CD4 T cells, suggesting novel and safe approaches to vaccination and adoptive T-cell therapies for patients before and after kidney transplantation.


Sign in / Sign up

Export Citation Format

Share Document