Sustainable CeO2/ZrO2 Mixed Oxide Catalyst For the Green Synthesis of Highly Functionalized 1,4-Dihydropyridine-2,3-dicarboxylate Derivatives

2018 ◽  
Vol 15 (3) ◽  
pp. 396-403 ◽  
Author(s):  
Sebenzile Shabalala ◽  
Suresh Maddila ◽  
Werner E. van-Zyl ◽  
Sreekantha B. Jonnalagadda

Aim and Objective: Ceria loaded on solid zirconia was employed as heterogeneous catalyst for the synthesis of pyridine derivatives via a one-vessel, four-component reaction consisting of substituted aldehyde, malononitrile, dimethylacetylenedicarboxylate and dimethylaniline with good to excellent product yields (87 to 95%). The noteworthy advantages of the facile method with ethanol as solvent are excellent yields with short reaction times. Catalyst is reusable with little loss of activity up to six rounds. Materials and Method: All the catalyst materials were synthesized by using simple wet-impregnation method. The powder X-ray diffraction, TEM, SEM and N2 adsorption/desorption analysis techniques were employed for the structural interpretation of CeO2/ZrO2, the identity of target products were established and confirmed by diverse spectral (1H NMR, 13C NMR, 15N NMR, FT-IR and HRMS) techniques. Results: As convincingly demonstrated by the synthetic approaches reported in this review, MCRs have facilitated many new methodologies with significant advantages for efficient and well organized synthesis of varied pyrazole derivatives. The methodology involved variety of options for catalysts that can be chosen using different solvents or solvent-free conditions and/or using alternative energy-efficient options such as microwave irradiation and sonification. This review brings together ample material about synthesis of varied pyrazole derivatives that may have prodigious scope, in drug design and therapeutics. It is anticipated that research efforts in this direction will endure in the search for novel, atom efficient, small molecules with excellent drug-like properties. Conclusion: In this study, we report on a green and efficient one-pot protocol for the synthesis of functionalized 1,4-dihydropyridine-2,3-dicarboxylate derivatives through a four-component reaction between malononitrile, dimethylacetylenedicarboxylate, dimethylaniline and substituted aldehydes using 2.5% CeO2/ZrO2 as a catalyst in EtOH and at room temperature. This methodology has several advantages such as short reaction times (< 30 min), high product yields (87-95%), ease of handling, facile and green work-up. The easy recoverable and reusable catalyst meets the industrial and environmental requirements and is versatile and cost effective.

BMC Chemistry ◽  
2019 ◽  
Vol 13 (1) ◽  
Author(s):  
Mohammad Ali Ghasemzadeh ◽  
Boshra Mirhosseini-Eshkevari ◽  
Mohammad Hossein Abdollahi-Basir

Abstract The synthesized Fe3O4@l-arginine showed strong catalytic performance in the one-pot synthesis of spiropyranopyrazoles via the reactions of hydrazines, β-keto esters, isatins, and malononitrile or ethyl cyanoacetate under solvent-free conditions. The biologically active heterocyclic compounds including spiropyranopyrazole derivatives were efficiently synthesized in short reaction times and excellent yields in the presence of Fe3O4/l-arginine at room temperature. The highlighted features of the Fe3O4@l-arginine nanocomposite are highly stable, easy to separate, low loading, cost-effective with easy preparation and reusability of the catalyst. The heterogeneous nanocomposite was fully characterized by SEM, EDX, FT-IR, XRD and TEM analysis.


2013 ◽  
Vol 78 (6) ◽  
pp. 769-779 ◽  
Author(s):  
Ali Ghasemzadeh ◽  
Javad Safaei-Ghomi ◽  
Safura Zahedi

Magnetically separable Fe3O4 nanoparticles supply environmentally friendly procedure for the synthesis of 14-aryl-14H-dibenzo[a,j]xanthene and 1,8-dioxo-octahydro-xanthene derivatives. These compounds were obtained in high yields and short reaction times by the reaction of dimedone and 2-naphthol with various aromatic aldehydes under solvent-free conditions. The catalyst coluld be easily recovered using an external magnet and reused for six cycles with almost consistent activity.


2020 ◽  
Vol 22 (2) ◽  
pp. 20-33 ◽  
Author(s):  
Jia Wei ◽  
Wenjun Gui ◽  
Yanjun Cui ◽  
Zhifang Zhang ◽  
Qahtan A. Yousif

AbstractSCMNPs@Uridine/Zn is utilized as an environmental-friendly and efficient heterogeneous nanocatalyst for two one-pot four-component condensation reactions, containing hydrazine hydrate, arylaldehyde, ethyl acetoacetate, and barbituric acid to yield tricyclic fused pyrazolopyranopyrimidine derivatives (5a-q), and hydrazine hydrate, arylaldehyde, malononitrile, and dimethyl acetylenedicarboxylate/diethyl acetylenedicarboxylate to yield 3-methyl carboxylate substituted pyrano[2,3-c]pyrazole derivatives (8a-y) under solvent-free conditions with high to excellent yields. The main advantages of this process are easy work-up, short reaction times, no chromatographic purifications, and recyclability of the catalyst for a minimum of six runs without any significant decrease in yields of the products. Also, the prepared catalyst SCMNPs@Uridine/Zn was synthesized and fully characterized by various techniques including Fourier transform infrared spectroscopy (FT-IR), energy dispersive X-ray (EDX), thermogravimetric analysis (TGA), X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and Raman spectroscopy.


2020 ◽  
Vol 18 (1) ◽  
pp. 648-662
Author(s):  
Shenghao Jiang ◽  
Macheng Shen ◽  
Fatima Rashid Sheykhahmad

AbstractIn this study, Fe3O4@urea/HITh-SO3H MNPs as a new, efficient, and recyclable solid acid magnetic nanocatalyst was synthesized and characterized using various methods including Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry, energy-dispersive X-ray spectroscopy, and X-ray powder diffraction. After the characterization of this new magnetic nanocatalyst, it was efficiently utilized for the promotion of the one-pot synthesis of 7-aryl-8H-benzo[h]indeno[1,2-b]quinoline-8-one and indeno[2′,1′:5,6]pyrido[2,3-d]pyrimidine derivatives via three-component reaction of the 1,3-indanedione, aldehyde, and 1-naphthylamine/1,3-dimethyl-6-aminouracil under solvent-free conditions at 80°C. The procedure gave the desired heterocyclic structures in high-to-excellent yields and short reaction times. Also because of the magnetic nature of the nanocatalyst, it can be separated with an external magnetic field and reused at least six runs without any considerable decrease in the catalytic behavior.


2019 ◽  
Vol 22 (2) ◽  
pp. 123-128
Author(s):  
Setareh Habibzadeh ◽  
Hassan Ghasemnejad-Bosra ◽  
Mina Haghdadi ◽  
Soheila Heydari-Parastar

Background: In this study, we developed a convenient methodology for the synthesis of coumarin linked to pyrazolines and pyrano [2,3-h] coumarins linked to 3-(1,5-diphenyl-4,5- dihydro-1H-pyrazol-3-yl)-chromen-2-one derivatives using Chlorosulfonic acid supported Piperidine-4-carboxylic acid (PPCA) functionalized Fe3O4 nanoparticles (Fe3O4-PPCA) catalyst. Materials and Methods:: Fe3O4-PPCA was investigated as an efficient and magnetically recoverable Nanocatalyst for the one-pot synthesis of substituted coumarins from the reaction of coumarin with a variety of aromatic aldehydes in high to excellent yield at room temperature under solvent-free conditions. The magnetic nanocatalyst can be easily recovered by applying an external magnet device and reused for at least 10 reaction runs without considerable loss of reactivity. Results and Conclusion: The advantages of this protocol are the use of commercially available materials, simple and an inexpensive procedure, easy separation, and an eco-friendly procedure, and it shows good reaction times, good to high yields, inexpensive and practicability procedure, and high efficiency.


2020 ◽  
Vol 17 (10) ◽  
pp. 772-778
Author(s):  
Abdulrhman Alsayari ◽  
Abdullatif Bin Muhsinah ◽  
Yahya I. Asiri ◽  
Jaber Abdullah Alshehri ◽  
Yahia N. Mabkhot ◽  
...  

The aim of this study was to synthesize and evaluate the biological activity of pyrazole derivatives, in particular, to perform a “greener” one-pot synthesis using a solvent-free method as an alternative strategy for synthesizing hydrazono/diazenyl-pyridine-pyrazole hybrid molecules with potential anticancer activity. Effective treatment for all types of cancers is still a long way in the future due to the severe adverse drug reactions and drug resistance associated with current drugs. Therefore, there is a pressing need to develop safer and more effective anticancer agents. In this context, some hybrid analogues containing the bioactive pharmacophores viz. pyrazole, pyridine, and diazo scaffolds were synthesized by one-pot method. Herein, we describe the expedient synthesis of pyrazoles by a onepot three-component condensation of ethyl acetoacetate/acetylacetone, isoniazid, and arenediazonium salts under solvent-free conditions, and the evaluation of their cytotoxicity using a sulforhodamine B assay on three cancer cell lines. Molecular docking studies employing tyrosine kinase were also carried out to evaluate the binding mode of the pyrazole derivatives under study. 1-(4-Pyridinylcarbonyl)-3- methyl-4-(2-arylhydrazono)-2-pyrazolin-5-ones and [4-(2-aryldiazenyl)-3,5-dimethyl-1H-pyrazol-1- yl]-4-pyridinylmethanones, previously described, were prepared using an improved procedure. Among these ten products, 1-isonicotinoyl-3-methyl-4-[2-(4-nitrophenyl)hydrazono]-2-pyrazolin-5-one (1f) displayed promising anticancer activity against the MCF-7, HepG2 and HCT-116 cell lines, with an IC50 value in the range of 0.2-3.4 μM. In summary, our findings suggest that pyrazoles containing hydrazono/ diazenyl and pyridine pharmacophores constitute promising scaffolds for the development of new anticancer agents.


2021 ◽  
Vol 76 (2) ◽  
pp. 85-90
Author(s):  
Abdolkarim Zare ◽  
Manije Dianat

Abstract A highly efficient and green protocol for the synthesis of pyrimido[4,5-b]quinolines has been described. The one-pot multicomponent reaction of dimedone with arylaldehydes and 6-amino-1,3-dimethyluracil in the presence of N,N-diethyl-N-sulfoethanaminium chloride ([Et3N–SO3H][Cl]) as an ionic liquid (IL) catalyst under solvent-free conditions afforded the mentioned compounds in high yields and short reaction times. Our protocol is superior to many of the reported protocols in terms of two or more of these factors: the reaction times, yields, conditions (solvent-free versus usage of organic solvents), temperature and catalyst amount.


2010 ◽  
Vol 2 (2) ◽  
pp. 337-342 ◽  
Author(s):  
P. Rajput ◽  
N. J. P. Subhashini ◽  
Shiva Raj

A series of 2,4,6-triarylpyridines have been prepared using a variety of aromatic and heteroaromatic aldehydes in the presence of aluminum phosphate (AlPO4) as a heterogeneous catalyst at 120 oC under solvent-free conditions. The present methodology offers several advantages such as excellent yields, simple procedure, shorter reaction times, milder conditions and the catalyst exhibited remarkable reusable activity. Keywords: Aluminum phosphate; 2,4,6-triarylpyridines; One-pot synthesis; Shorter reaction times;  Reusable activity.  © 2010 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. DOI: 10.3329/jsr.v2i2.3859               J. Sci. Res. 2 (2), 337-342 (2010) 


2021 ◽  
Vol 18 ◽  
Author(s):  
Abolfazl Olyaei ◽  
Zahra Ghahremany ◽  
Madieh Sadeghpour

: A green and efficient protocol was developed for the one-pot three-component synthesis of novel 2-(4-hydroxy-2-oxo-2H-chromen-3-yl)-2-(arylamino)-1H-indene-1,3(2H)-dione derivatives by the reaction of 4-hydroxycoumarin, ninhydrin and aromatic amines in the presence of guanidine hydrochloride as an organocatalyst under solvent-free conditions. The present approach offers several advantages such as low cost, simple work-up, short reaction times, chromatography-free purification, high yields and greener conditions.


Sign in / Sign up

Export Citation Format

Share Document