scholarly journals SCMNPs@Uridine/Zn: An efficient and reusable heterogeneous nanocatalyst for the rapid one-pot synthesis of tricyclic fused pyrazolopyranopyrimidine and 3-methyl carboxylate substituted pyrano[2,3-c]pyrazole derivatives under solvent-free conditions

2020 ◽  
Vol 22 (2) ◽  
pp. 20-33 ◽  
Author(s):  
Jia Wei ◽  
Wenjun Gui ◽  
Yanjun Cui ◽  
Zhifang Zhang ◽  
Qahtan A. Yousif

AbstractSCMNPs@Uridine/Zn is utilized as an environmental-friendly and efficient heterogeneous nanocatalyst for two one-pot four-component condensation reactions, containing hydrazine hydrate, arylaldehyde, ethyl acetoacetate, and barbituric acid to yield tricyclic fused pyrazolopyranopyrimidine derivatives (5a-q), and hydrazine hydrate, arylaldehyde, malononitrile, and dimethyl acetylenedicarboxylate/diethyl acetylenedicarboxylate to yield 3-methyl carboxylate substituted pyrano[2,3-c]pyrazole derivatives (8a-y) under solvent-free conditions with high to excellent yields. The main advantages of this process are easy work-up, short reaction times, no chromatographic purifications, and recyclability of the catalyst for a minimum of six runs without any significant decrease in yields of the products. Also, the prepared catalyst SCMNPs@Uridine/Zn was synthesized and fully characterized by various techniques including Fourier transform infrared spectroscopy (FT-IR), energy dispersive X-ray (EDX), thermogravimetric analysis (TGA), X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and Raman spectroscopy.

2021 ◽  
Vol 11 (3) ◽  
pp. 215
Author(s):  
Achraf El Hallaoui ◽  
Tourya Ghailane ◽  
Soukaina Chehab ◽  
Youssef Merroun ◽  
Rachida Ghailane ◽  
...  

<p>This work aims to prepare a new bimetallic phosphate catalyst using a new simple and effective method. This new catalyst was ready for the first time by a modification of Triple Super Phosphate (TSP) fertilizer with silver sulfate (AgSO<sub>4</sub>), followed by the impregnation of the aluminum atoms using aluminum nitrate (Al(NO<sub>3</sub>)<sub>3</sub>). The use of Al/Ag<sub>3</sub>PO<sub>4</sub>, for the first time as a heterogeneous catalyst in organic chemistry, offers a new, efficient, and green pathway for synthesizing 1,2-dihydro-l-phenyl-3H-naphth[1,2-e]-[1,3]oxazin-3-one derivatives by one-pot three-component cyclocondensation of b-naphthol, aryl aldehyde, and urea. The structure and the morphology of the prepared catalyst were characterized by spectroscopic methods such as X-Ray Diffraction (XRD), Fourier Transform Infrared spectroscopy (FT-IR), and dispersive X-ray spectrometry coupled with a scanning electron microscope (EDX-SEM). In addition, the optimization of the reaction parameters was carried out considering the effect of catalyst amount, the temperature, and the solvent. The procedure described herein allowed a comfortable preparation of oxazine derivatives with excellent yields, short reaction times, and in the absence of organic solvent.</p>


2020 ◽  
Author(s):  
Arefeh Dehghani Tafti ◽  
Bi BiFatemeh Mirjalili ◽  
Abdolhamid Bamoniri ◽  
Naeimeh Salehi

Abstract Nano-egg shell/Ti(IV) (NEST) as a novel naturally based catalyst was prepared, characterized and applied for the synthesis of dihydropyrano[2,3-c]pyrazole [DHPP] derivatives. The characterization of NEST was performed using Fourier Transform Infrared (FT-IR) spectroscopy, X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Energy-Dispersive X-ray Spectroscopy (EDX), and Thermo Gravimetric Analysis (TGA). DHPPs were synthesized in the presence of NEST via a four component reaction of aldehydes, ethyl acetoacetate, malononitrile and hydrazine hydrate at room temperature under solvent free conditions. The principal affairs of this procedure are easy work-up, high yields of pure products without the use of any toxic organic solvents, mild condition and short reaction times.


2022 ◽  
Vol 19 ◽  
Author(s):  
Runjhun Tandon ◽  
Shripad Patil ◽  
Nitin Tandon ◽  
Pushpendra Kumar

Abstract: A novel magnetite silica-coated nanoparticle-supported molybdate nanocatalyst has been prepared successfully by a simple co-precipitation method. Prepared nanocatalyst has been characterized by different techniques like Fourier Transmission Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FE-SEM) and Energy Dispersive X-ray Spectroscopy (EDX). Further, the catalytic activity of the nanocatalyst was explored for N-formylation reactions under solvent-free conditions. Interestingly, the catalyst could be reused for 10 cycles and only 2 mol % of the catalyst was sufficient to catalyze the N-formylation reaction at 700C under solvent-free conditions.


2015 ◽  
Vol 80 (10) ◽  
pp. 1265-1272 ◽  
Author(s):  
Ghodsi Ziarani ◽  
Mahshid Rahimifard ◽  
Fatemeh Nouri ◽  
Alireza Badiei

Propylamine functionalized nanoporous silica (SBA-Pr-NH2) has been used as an efficient heterogeneous solid basic nanoreactor in the synthesis of 6'-amino-1'H-spiro[indoline-3,4'-pyrano[2,3-c]pyrazol]-2-one derivatives 5 through one-pot, four component condensation of isatin derivatives 1, activated methylene reagents 2, hydrazine hydrate 3 and ?-keto esters 4 under solvent free conditions at room temperature


2020 ◽  
Vol 18 (1) ◽  
pp. 648-662
Author(s):  
Shenghao Jiang ◽  
Macheng Shen ◽  
Fatima Rashid Sheykhahmad

AbstractIn this study, Fe3O4@urea/HITh-SO3H MNPs as a new, efficient, and recyclable solid acid magnetic nanocatalyst was synthesized and characterized using various methods including Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry, energy-dispersive X-ray spectroscopy, and X-ray powder diffraction. After the characterization of this new magnetic nanocatalyst, it was efficiently utilized for the promotion of the one-pot synthesis of 7-aryl-8H-benzo[h]indeno[1,2-b]quinoline-8-one and indeno[2′,1′:5,6]pyrido[2,3-d]pyrimidine derivatives via three-component reaction of the 1,3-indanedione, aldehyde, and 1-naphthylamine/1,3-dimethyl-6-aminouracil under solvent-free conditions at 80°C. The procedure gave the desired heterocyclic structures in high-to-excellent yields and short reaction times. Also because of the magnetic nature of the nanocatalyst, it can be separated with an external magnetic field and reused at least six runs without any considerable decrease in the catalytic behavior.


2019 ◽  
Vol 22 (2) ◽  
pp. 123-128
Author(s):  
Setareh Habibzadeh ◽  
Hassan Ghasemnejad-Bosra ◽  
Mina Haghdadi ◽  
Soheila Heydari-Parastar

Background: In this study, we developed a convenient methodology for the synthesis of coumarin linked to pyrazolines and pyrano [2,3-h] coumarins linked to 3-(1,5-diphenyl-4,5- dihydro-1H-pyrazol-3-yl)-chromen-2-one derivatives using Chlorosulfonic acid supported Piperidine-4-carboxylic acid (PPCA) functionalized Fe3O4 nanoparticles (Fe3O4-PPCA) catalyst. Materials and Methods:: Fe3O4-PPCA was investigated as an efficient and magnetically recoverable Nanocatalyst for the one-pot synthesis of substituted coumarins from the reaction of coumarin with a variety of aromatic aldehydes in high to excellent yield at room temperature under solvent-free conditions. The magnetic nanocatalyst can be easily recovered by applying an external magnet device and reused for at least 10 reaction runs without considerable loss of reactivity. Results and Conclusion: The advantages of this protocol are the use of commercially available materials, simple and an inexpensive procedure, easy separation, and an eco-friendly procedure, and it shows good reaction times, good to high yields, inexpensive and practicability procedure, and high efficiency.


2020 ◽  
Vol 17 (10) ◽  
pp. 772-778
Author(s):  
Abdulrhman Alsayari ◽  
Abdullatif Bin Muhsinah ◽  
Yahya I. Asiri ◽  
Jaber Abdullah Alshehri ◽  
Yahia N. Mabkhot ◽  
...  

The aim of this study was to synthesize and evaluate the biological activity of pyrazole derivatives, in particular, to perform a “greener” one-pot synthesis using a solvent-free method as an alternative strategy for synthesizing hydrazono/diazenyl-pyridine-pyrazole hybrid molecules with potential anticancer activity. Effective treatment for all types of cancers is still a long way in the future due to the severe adverse drug reactions and drug resistance associated with current drugs. Therefore, there is a pressing need to develop safer and more effective anticancer agents. In this context, some hybrid analogues containing the bioactive pharmacophores viz. pyrazole, pyridine, and diazo scaffolds were synthesized by one-pot method. Herein, we describe the expedient synthesis of pyrazoles by a onepot three-component condensation of ethyl acetoacetate/acetylacetone, isoniazid, and arenediazonium salts under solvent-free conditions, and the evaluation of their cytotoxicity using a sulforhodamine B assay on three cancer cell lines. Molecular docking studies employing tyrosine kinase were also carried out to evaluate the binding mode of the pyrazole derivatives under study. 1-(4-Pyridinylcarbonyl)-3- methyl-4-(2-arylhydrazono)-2-pyrazolin-5-ones and [4-(2-aryldiazenyl)-3,5-dimethyl-1H-pyrazol-1- yl]-4-pyridinylmethanones, previously described, were prepared using an improved procedure. Among these ten products, 1-isonicotinoyl-3-methyl-4-[2-(4-nitrophenyl)hydrazono]-2-pyrazolin-5-one (1f) displayed promising anticancer activity against the MCF-7, HepG2 and HCT-116 cell lines, with an IC50 value in the range of 0.2-3.4 μM. In summary, our findings suggest that pyrazoles containing hydrazono/ diazenyl and pyridine pharmacophores constitute promising scaffolds for the development of new anticancer agents.


2021 ◽  
Vol 76 (2) ◽  
pp. 85-90
Author(s):  
Abdolkarim Zare ◽  
Manije Dianat

Abstract A highly efficient and green protocol for the synthesis of pyrimido[4,5-b]quinolines has been described. The one-pot multicomponent reaction of dimedone with arylaldehydes and 6-amino-1,3-dimethyluracil in the presence of N,N-diethyl-N-sulfoethanaminium chloride ([Et3N–SO3H][Cl]) as an ionic liquid (IL) catalyst under solvent-free conditions afforded the mentioned compounds in high yields and short reaction times. Our protocol is superior to many of the reported protocols in terms of two or more of these factors: the reaction times, yields, conditions (solvent-free versus usage of organic solvents), temperature and catalyst amount.


BMC Chemistry ◽  
2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Arefeh Dehghani Tafti ◽  
Bi Bi Fatemeh Mirjalili ◽  
Abdolhamid Bamoniri ◽  
Naeimeh Salehi

AbstractNano-eggshell/Ti(IV) as a novel naturally based catalyst was prepared, characterized and applied for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives. The characterization of nano-eggshell/Ti(IV) was performed using Fourier Transform Infrared spectroscopy, X-ray Diffraction, Field Emission Scanning Electron Microscopy, Energy-Dispersive X-ray Spectroscopy, and Thermo Gravimetric Analysis. Dihydropyrano[2,3-c]pyrazoles were synthesized in the presence of nano-eggshell/Ti(IV) via a four component reaction of aldehydes, ethyl acetoacetate, malononitrile and hydrazine hydrate at room temperature under solvent free conditions. The principal affairs of this procedure are mild condition, short reaction times, easy work-up, high yields, reusability of the catalyst and the absence of toxic organic solvents.


2010 ◽  
Vol 2 (2) ◽  
pp. 337-342 ◽  
Author(s):  
P. Rajput ◽  
N. J. P. Subhashini ◽  
Shiva Raj

A series of 2,4,6-triarylpyridines have been prepared using a variety of aromatic and heteroaromatic aldehydes in the presence of aluminum phosphate (AlPO4) as a heterogeneous catalyst at 120 oC under solvent-free conditions. The present methodology offers several advantages such as excellent yields, simple procedure, shorter reaction times, milder conditions and the catalyst exhibited remarkable reusable activity. Keywords: Aluminum phosphate; 2,4,6-triarylpyridines; One-pot synthesis; Shorter reaction times;  Reusable activity.  © 2010 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. DOI: 10.3329/jsr.v2i2.3859               J. Sci. Res. 2 (2), 337-342 (2010) 


Sign in / Sign up

Export Citation Format

Share Document