scholarly journals Synthesis of Piperidine Conjugated Dihydroquinazolin-4(1H)-ones and their Antiproliferative Activity, Molecular Docking Studies and DFT Calculations

2019 ◽  
Vol 17 (1) ◽  
pp. 85-93 ◽  
Author(s):  
Kereyagalahally Honneshappa Narasimhamurthy ◽  
Chandra ◽  
Toreshettahally Ramesh Swaroop ◽  
Swamy Jagadish ◽  
Kanchugarakoppal Subbegowda Rangappa

Background: Xanthatin, fluoropyrimidine and thienopyrimidine, pyrazolopyrimidine, pyrimidine carboxamides, and SKLB1002 are reported as VEGFR2 tyrosine kinase inhibitors. Recently, many studies related to different heterocycles conjugated with dihydroquinazolinones are known to have very good biological activities. In this study, we are intended to explore the cytotoxic studies of piperidine conjugated dihydroquinazolinones against colorectal/colon cancer cell lines and along with molecular docking studies and DFT calculations. Methods: The colorectal/colon cell lines HCT116 and A549 cell lines were treated with these compounds and cytotoxic activities were evaluated by MTT dye uptake method. We performed molecular modelling for compound 3d using the Auto Dock software. The binding of compound 3d with target proteins was studied with the collection of experimentally determined PDB database. Optimized geometry by DFT calculations was performed with B3LYP/6-31G (d) basis set. Results: Piperidine-conjugated dihydroquinazolinone analogues displayed anticancer activity. Particularly, the compound 3d with electron-withdrawing substituents on a phenyl ring showed significant cytotoxicity against HCT116 and A549 cell lines. Molecular docking studies proved that the compound 3d has good fitting by forming hydrogen bonds with amino acid residues at the active sites of VEGFR2. The HOMO, LUMO, their energies and UV visible spectrum were predicted using DFT calculations. Conclusion: Four piperidine-conjugated dihydroquinazolinones were synthesized and evaluated against colorectal and colon cancer cell lines. Compound 3d significantly inhibited the growth of HCT116 and A549. Molecular docking studies displayed good fitting of compound 3d by forming different H-bonds with the amino acid at the active sites of the VEGFR2 target. Using a theoretical approach, we optimized HOMO and LUMO plots for the compound 3d.

Author(s):  
Madhavi Gangapuram ◽  
Suresh Eyunni ◽  
Wang Zhang ◽  
Kinfe K. Redda

Aim: : The aim of our research work is the synthesis of tetrahydroisoquinoline derivatives as anti-Angiogenesis and anti-cancer agents. Background: : Cancer is the second leading cause of deaths in United States. The current recovery rate from the advanced treatment for the cancer is unacceptably low. Therefore, identification of novel, potent and less toxic anticancer agents remains a top priority. Objective: To 1) evaluate anti-angiogenesis, anticancer activities of THIQs on different colorectal cancer cell lines (CRC) viz., Colo320, DLD-1, HCT116, SNU-C1, SW480 and GSK3b in pre-treated viability HCT116. 2) Undertake molecular docking studies of THIQs. Methods: Twenty synthesized THIQs were screened in the Eli Lilly’s Open Innovation Drug Discovery Program and selected twelve compounds for in vitro primary screening in the KRas (Kirsten rat sarcoma)-Wnt SL (Synthetic Lethal) in the basal viability of different colon cancer cell lines. Docking studies of the active THIQs were also performed in our laboratory, targeting the active sites of KRas and VEGF receptors. Results: Compound GM-3-18 was found to possess significant activities for KRas inhibition, with IC50 values in the rage of 0.9 µM to 10.7 µM, for all colon cancer cell lines. Compound GM-3-121 showed potent anti-angiogenesis activity with IC50 = 1.72 µM. Molecular docking studies showed that the carbonyl oxygen atoms of GM-3-18 and GM-3-121 showed hydrogen bonding interactions with the hydrogen of - OH groups of THR 74 (A). Conclusion: The results indicated that all the compounds showed moderate to high activity for KRas inhibition. The THIQs bearing the chloro group at the 4-postiton of the phenyl ring (GM-3-18) exhibited significant KRas inhibition against all colon cancer cell lines.


2019 ◽  
Vol 9 (4) ◽  
pp. 341-348 ◽  
Author(s):  
Ibrahim Awad Mohammed ◽  
Muhammad Nadeem Akhtar ◽  
Foo Jhi Biau ◽  
Yin Sim Tor ◽  
Seema Zareen ◽  
...  

<P>Background: Breast cancer and human colon cancer are the most common types of cancer in females and males, respectively. Breast cancer is the most common type of cancer after lung and colon cancers. Natural products are an important source for drug discovery. Boesenbergia rotunda (L.) Mansf. is commonly known as finger root, belonging to the Zingiberaceae family. </P><P> Objective: The aim of this study to isolate some natural compounds from the rhizomes of B. rotunda (L.) Mansf., and to investigate their cytotoxicity against the human triple-negative breast cancer cell (MDA-MB-231) and HT-29 colon cancer cell lines. </P><P> Methods: The dried rhizomes of B. rotunda were extracted with methanol. The methanolic extract was further used for solvent-solvent extraction. Bioassay-guided extraction and isolation of the rhizomes of the B. rotunda exhibited cytotoxic properties of hexane and dichloromethane fractions. </P><P> Results: Six major chemical constituents, pinostrobin (1), pinostrobin chalcone (2), cardamonin (3), 4,5-dihydrokawain (4), pinocembrin (5), and alpinetin (6) were isolated from the rhizomes of the B. rotunda. All the chemical constituents were screened against the human triple-negative breast cancer cell (MDA-MB-231) and HT-29 colon cancer cell lines. The compound cardamonin (3) (IC50 = 5.62&#177;0.61 and 4.44&#177;0.66 &#181;g/mL) and pinostrobin chalcone (2), (IC50 = 20.42&#177;2.23 and 22.51&#177;0.42 μg/mL) were found to be potent natural cytotoxic compounds against MDA-MB-231 and HT-29 colon cancer cell lines, respectively. </P><P> Conclusion: Cardamonin (3) and pinostrobin chalcone (2) were found to be the most potential natural compounds against breast cancer cell line MDA-MB-231 and colon cancer HT-29 cell line.</P>


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zeinab Faghfoori ◽  
Mohammad Hasan Faghfoori ◽  
Amir Saber ◽  
Azimeh Izadi ◽  
Ahmad Yari Khosroushahi

Abstract Background Colorectal cancer (CRC), with a growing incidence trend worldwide, is resistant to apoptosis and has uncontrolled proliferation. It is recently reported that probiotic microorganisms exert anticancer effects. The genus Bifidobacterium, one of the dominant bacterial populations in the gastrointestinal tract, has received increasing attention because of widespread interest in using it as health-promoting microorganisms. Therefore, the present study aimed to assess the apoptotic effects of some bifidobacteria species on colon cancer cell lines. Methods The cytotoxicity evaluations performed using MTT assay and FACS-flow cytometry tests. Also, the effects of five species of bifidobacteria secretion metabolites on the expression level of anti- or pro-apoptotic genes including BAD, Bcl-2, Caspase-3, Caspase-8, Caspase-9, and Fas-R studied by real-time polymerase chain reaction (RT-PCR) method. Results The cell-free supernatant of all studied bifidobacteria significantly decreased the survival rates of colon cancer cells compared with control groups. Flow cytometric and RT-PCR results indicated that apoptosis is induced by bifidobacteria secretion metabolites and the mechanism for the action of bifidobacteria species in CRC prevention could be down-regulation and up-regulation of anti-apoptotic and, pro-apoptotic genes. Conclusions In the present study, different bifidobacteria species showed anticancer activity on colorectal cancer cells through down-regulation and up-regulation of anti-apoptotic and pro-apoptotic genes. However, further studies are required to clarify the exact mechanism of apoptosis induction by bifidobacteria species.


2005 ◽  
Vol 15 (17) ◽  
pp. 3930-3933 ◽  
Author(s):  
Rosaria Ottanà ◽  
Stefania Carotti ◽  
Rosanna Maccari ◽  
Ida Landini ◽  
Giuseppa Chiricosta ◽  
...  

1993 ◽  
Vol 11 (5-6) ◽  
pp. 225-237
Author(s):  
Udo Schumacher ◽  
Dhia Mukthar ◽  
Thomas Schenker

A panel of monoclonal antibodies (n=72 including controls) directed against lung cancer antigens was screened immunohistochemically against a panel of seven human lung cancer cell lines (including small cell carcinoma, squamous cell carcinoma, adenocarcinoma and mesothelioma), six human breast cancer cell lines and one human colon cancer cell line, The majority of the antibodies (n=42) reacted also with antigens present on breast and colon cancer cell lines, This cross reactivity especially between lung and breast cancer cell lines is not altogether unexpected since antigens common to breast and lung tissue including their neoplasms such as MUC1 antigen have been described, Our results indicate that epitopes shared by lung and breast cancers are probably more common than previously thought. The relevance for prognosis and therapy of these shared antigens, especially as disease markers in breast cancer, has to be investigated.


Author(s):  
Nadia Ali Ahmed Elkanzi ◽  
Hajer Hrichi ◽  
Rania B. Bakr

Background: The 1,4-naphthoquinone ring has attracted prominent interest in the field of medicinal chemistry due to its potent pharmacological activity as antioxidant, antibacterial, antifungal, and anticancer. Objective: Herein, a series of new Schiff bases (4-6) and chalcones (8a-c & 9a-d) bearing 1,4-naphthoquinone moiety were synthesized in good yields and were subjected to in-vitro antimicrobial, antioxidant, and molecular docking testing. Methods: A facile protocol has been described in this study for the synthesis of new derivatives (4-7, 8a-c, and 9a-d) bearing 1,4-naphthoquinone moiety. The chemical structures of all the synthesized compounds were identified by 1H-NMR, 13C-NMR, MS, and elemental analyses. Moreover, these derivatives were assessed for their in-vitro antimicrobial activity against gram-positive, gram-negative bacteria, and fungal strains. Further studies were conducted to test their antioxidant activity using DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging assay. Molecular docking studies were realized to identify the most likely interactions of the novel compounds within the protein receptor. Results: The antimicrobial results showed that most of the compounds displayed good efficacy against both bacterial and fungal strains. The antioxidant study revealed that compounds 9d, 9a, 9b, 8c, and 6 exhibited the highest radical scavenging activity. Docking studies of the most active antimicrobial compounds within GLN- 6-P, recorded good scores with several binding interactions with the active sites. Conclusion: Based on the obtained results, it was found that compounds 8b, 9b, and 9c displayed the highest activity against both bacterial and fungal strains. The obtained findings from the DPPH radical scavenging method revealed that compounds 9d and 9a exhibited the strongest scavenging potential. The molecular docking studies proved that the most active antimicrobial compounds 8b, 9b and 9c displayed the highest energy binding scores within the glucosamine-6-phosphate synthase (GlcN-6-P) active site.


Sign in / Sign up

Export Citation Format

Share Document