In silico and in vitro analysis of a multiepitope L1-E7 fusion construct for vaccine development against human papillomaviruses

Author(s):  
Elnaz Abbasifarid ◽  
Azam Bolhassani ◽  
Shiva Irani ◽  
Fattah Sotoodehnejadnematalahi

Background: Human papillomavirus (HPV) infection is the major risk factor for cervical cancer. Current prophylactic HPV vaccines provide immunity against most genital and carcinogenic HPV types. However, these vaccines failed to produce immune responses against already established HPV infections. Methods: For the design of a therapeutic vaccine candidate, we utilized immunoinformatics tools to design a potential multiepitope fusion construct based on L1 and E7 genes from different high- and low-risk HPV types. After determination of CD4+ and CD8+ T cell epitopes, the allergenicity, toxicity, immunogenicity, conservancy, and population coverage were analyzed for epitope selection. Then, the hemolytic probability of the selected epitopes, and molecular docking between major histocompatibility complex (MHC) and the chosen epitopes were performed by different web servers. Next, a multiepitope peptide construct consisting of 12 epitopes linked by the AAY proteasomal sequence was designed. After that, physicochemical properties, solubility, secondary and tertiary structures of this construct were evaluated by bioinformatics tools. Finally, after amino acid reverse translation of the multiepitope peptide construct, expression of the L1-E7 DNA construct (pEGFP-L1-E7) was investigated in HEK-293T cells using fluorescent microscopy, flow cytometry, and western blotting. Results: Considering various parameters, the immunodominant peptides such as L1(MHC-I)-DLDQFPLGRKFLLQ, L1(MHC-II)-NQLFVTVVDTTRSTN, E7-HPV16(MHC-I)-AEPDRAHYNIVTF, E7-HPV18(MHC-I)-HGPKATVQDIVLHL, E7-HPV31(MHC-I)-KPDTSNYNIVTF, E7-HPV33(MHC-I)-RPDGQAQPATADYYI, E7-HPV45(MHC-I)- RTLQQLFLSFV, E7-HPV16(MHC-II)-TLHEYMLDLQPETTD, E7-HPV18(MHC-II)-LRAFQQLFLNTLSFV, E7-HPV31(MHC-II)-PTLQDYVLDLQPEAT, E7-HPV33(MHC-II)-LKEYVLDLYPEPTDL and E7-HPV45(MHC-II)-LQQLFLSTLSFVCPW were determined to design the vaccine construct. The results indicated efficient expression of the L1-E7 DNA construct (74 ± 2.19%) in vitro. Moreover, the polyepitope peptide generated in the cells was detected as a clear band of ~ 50 kDa in western blotting. Conclusion: Regarding the favorable transfection efficiency of the designed L1-E7 multiepitope construct, in vivo validation study on its therapeutic potential is underway.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Mustafa Elhag ◽  
Ruaa Mohamed Alaagib ◽  
Nagla Mohamed Ahmed ◽  
Mustafa Abubaker ◽  
Esraa Musa Haroun ◽  
...  

Pseudomonas aeruginosa is a common pathogen that is responsible for serious hospital-acquired infections, ventilator-associated pneumonia, and various sepsis syndromes. Also, it is a multidrug-resistant pathogen recognized for its ubiquity and its intrinsically advanced antibiotic-resistant mechanisms. It usually affects immunocompromised individuals but can also infect immunocompetent individuals. There is no vaccine against it available till now. This study predicts an effective epitope-based vaccine against fructose bisphosphate aldolase (FBA) of Pseudomonas aeruginosa using immunoinformatics tools. The protein sequences were obtained from NCBI, and prediction tests were undertaken to analyze possible epitopes for B and T cells. Three B cell epitopes passed the antigenicity, accessibility, and hydrophilicity tests. Six MHC I epitopes were found to be promising, while four MHC II epitopes were found promising from the result set. Nineteen epitopes were shared between MHC I and II results. For the population coverage, the epitopes covered 95.62% worldwide excluding certain MHC II alleles. We recommend in vivo and in vitro studies to prove its effectiveness.


2004 ◽  
Vol 78 (19) ◽  
pp. 10588-10597 ◽  
Author(s):  
Michael Schindler ◽  
Jan Münch ◽  
Matthias Brenner ◽  
Christiane Stahl-Hennig ◽  
Jacek Skowronski ◽  
...  

ABSTRACT A variety of simian immunodeficiency virus (SIVmac) nef mutants have been investigated to clarify which in vitro Nef functions contribute to efficient viral replication and pathogenicity in rhesus macaques. Most of these nef alleles, however, were only functionally characterized for their ability to down-modulate CD4 and class I major histocompatibility complex (MHC-I) cell surface expression and to enhance SIV replication and infectivity. To obtain information on the in vivo relevance of more recently established Nef functions, we examined the ability of a large panel of constructed SIVmac Nef mutants and of variants that emerged in infected macaques to down-regulate CD3, CD28, and MHC-II and to up-regulate the MHC-II-associated invariant chain (Ii). We found that all these four Nef functions were restored in SIV-infected macaques. In most cases, however, the initial mutations and the changes selected in vivo affected several in vitro Nef functions. For example, truncated Nef proteins that emerged in animals infected with SIVmac239 containing a 152-bp deletion in nef efficiently modulated both CD3 and Ii surface expression. Overall, our results suggest that the effect of Nef on each of the six cellular receptors investigated contributes to viral fitness in the infected host but also indicate that modulation of CD3, MHC-I, MHC-II, or Ii surface expression alone is insufficient for SIV virulence.


Author(s):  
Edison Ong ◽  
Mei U Wong ◽  
Anthony Huffman ◽  
Yongqun He

AbstractTo ultimately combat the emerging COVID-19 pandemic, it is desired to develop an effective and safe vaccine against this highly contagious disease caused by the SARS-CoV-2 coronavirus. Our literature and clinical trial survey showed that the whole virus, as well as the spike (S) protein, nucleocapsid (N) protein, and membrane protein, have been tested for vaccine development against SARS and MERS. We further used the Vaxign reverse vaccinology tool and the newly developed Vaxign-ML machine learning tool to predict COVID-19 vaccine candidates. The N protein was found to be conserved in the more pathogenic strains (SARS/MERS/COVID-19), but not in the other human coronaviruses that mostly cause mild symptoms. By investigating the entire proteome of SARS-CoV-2, six proteins, including the S protein and five non-structural proteins (nsp3, 3CL-pro, and nsp8-10) were predicted to be adhesins, which are crucial to the viral adhering and host invasion. The S, nsp3, and nsp8 proteins were also predicted by Vaxign-ML to induce high protective antigenicity. Besides the commonly used S protein, the nsp3 protein has not been tested in any coronavirus vaccine studies and was selected for further investigation. The nsp3 was found to be more conserved among SARS-CoV-2, SARS-CoV, and MERS-CoV than among 15 coronaviruses infecting human and other animals. The protein was also predicted to contain promiscuous MHC-I and MHC-II T-cell epitopes, and linear B-cell epitopes localized in specific locations and functional domains of the protein. Our predicted vaccine targets provide new strategies for effective and safe COVID-19 vaccine development.


mBio ◽  
2018 ◽  
Vol 9 (6) ◽  
Author(s):  
Elaine M. Mokrzan ◽  
Laura A. Novotny ◽  
Kenneth L. Brockman ◽  
Lauren O. Bakaletz

ABSTRACTOtitis media (OM) is often polymicrobial, with nontypeableHaemophilus influenzae(NTHI) andMoraxella catarrhalis(Mcat) frequently cocultured from clinical specimens. Bacterial biofilms in the middle ear contribute to the chronicity and recurrence of OM; therefore, strategies to disrupt biofilms are needed. We have focused our vaccine development efforts on the majority subunit of NTHI type IV pili, PilA. Antibodies against a recombinant, soluble form of PilA (rsPilA) both disrupt and prevent the formation of NTHI biofilmsin vitro.Moreover, immunization with rsPilA prevents and resolves NTHI-induced experimental OM. Here, we show that antibodies against rsPilA also prevent and disrupt polymicrobial biofilms. Dual-species biofilms formed by NTHI and Mcat at temperatures that mimic the human nasopharynx (34°C) or middle ear (37°C) were exposed to antiserum against either rsPilA or the OMP P5 adhesin of NTHI. NTHI+Mcat biofilm formation was significantly inhibited by antiserum directed against both adhesin proteins at either temperature. However, only anti-rsPilA disrupted NTHI+Mcat preestablished biofilms at either temperature and actively dispersed both NTHI and Mcat via interspecies quorum signaling. Newly released NTHI and Mcat were significantly more susceptible to killing by antibiotics. Taken together, these results revealed new opportunities for treatment of biofilm-associated diseases via a strategy that combines vaccine-induced antibody-mediated biofilm dispersal with traditional antibiotics, at a significantly reduced dosage to exploit the newly released, antibiotic-sensitive phenotype. Combined, our data strongly support the utility of rsPilA both as a preventative and as a therapeutic vaccine antigen for polymicrobial OM due to NTHI and Mcat.IMPORTANCEMiddle ear infections (or otitis media [OM]) are highly prevalent among children worldwide and present a tremendous socioeconomic challenge for health care systems. More importantly, this disease diminishes the quality of life of young children. OM is often chronic and recurrent, due to the presence of highly antibiotic-resistant communities of bacteria (called biofilms) that persist within the middle ear space. To combat these recalcitrant infections, new and powerful biofilm-directed approaches are needed. Here, we describe the ability to disrupt a biofilm formed by the two most common bacteria that cause chronic and recurrent OM in children, via an approach that combines the power of vaccines with that of traditional antibiotics. An outcome of this strategy is that antibiotics can more easily kill the bacteria that our vaccine-induced antibodies have released from the biofilm. We believe that this approach holds great promise for both the prevention and treatment of OM.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A235-A236
Author(s):  
Kathryn Luly ◽  
Jordan Green ◽  
Stephany Tzeng ◽  
Joel Sunshine

BackgroundMerkel cell carcinoma (MCC) is a rare skin cancer with 46% disease-associated mortality and half of patients unresponsive to immune checkpoint inhibitors.1 2 MCC and melanomas often display decreased MHC class I (MHC-I) expression on the surface of cells, which prevents antigen recognition by T cells (”signal 1”) and hampers immune activation. We therefore sought to genetically reprogram cells to express their own costimulatory molecules (”signal 2”) and immunostimulatory cytokines (”signal 3”) to increase MHC-I expression and drive a targeted immune response.MethodsWe used biodegradable poly(beta-amino ester) nanoparticles (NPs) to co-deliver plasmids encoding a signal 2 molecule (4-1BBL) and two signal 3 molecules (IL-12 and IFNγ) to cancer cells. For in vitro evaluation of NPs we used two patient-derived MCC cell lines with low baseline MHC-I expression; MCC13 and UISO. Co-culture experiments were performed with human PBMCs or primary human natural killer (NK) cells. All in vitro analysis was performed 7 days following PBMC or NK cell addition. For in vivo evaluation, subcutaneous B16F10 mouse melanoma tumors were implanted in C57BL/6J mice and NPs were administered by direct injection into the tumor with and without intraperitoneal injection of αPD1. Tumors were harvested for analysis on day 16.ResultsTransfection with particles delivering the three plasmids to MCC13 and UISO increased MHC-I expression (mean fluorescence intensity) 1.6- and 5.0-fold, respectively, and MHC-II expression increased 1.6- and 6.3-fold, respectively (figure 1). In co-culture with human PBMCs, signal 2/3 particles resulted in increased leukocyte proliferation (4.6- and 6.1-fold increase, respectively) and led to significantly reduced MCC viability (10.6 and 1.6% vs control particles)(figure 2). When MCC13 cells were co-cultured with primary human NK cells, NK cell expansion increased 355-fold with 4-1BBL/IL-12 particles compared to control particles and was accompanied by 2.5% MCC13 cell viability, indicating a potent innate immune response with signal 2/3 NP administration in vitro (figure 3). Following evaluation of NPs in vivo, assessment of MHC-I and MHC-II expression in the melanoma tumors found increased expression with signal 2/3 NPs compared to control NPs (figure 4). When signal 2/3 NPs were administered in combination with αPD1 treatment, 4-1BBL/IL-12 NPs with αPD1 demonstrated improved survival compared to αPD1 treatment with control NPs (p=0.0010) (figure 5).Abstract 222 Figure 1Administration of signal 2/3 NPs to MCC13 and UISO cells led to increases in MHC-I and MHC-II expression after 7 days. MHC-I expression in transfected cells (red) and MHC-II expression in transfected cells (blue) compared to untreated control (black)Abstract 222 Figure 2Co-culture of transfected MCC cells with human PBMCs led to increases in CD45+ cells and reduced MCC cell viability after 7 daysAbstract 222 Figure 3Co-culture of 4-1BBL/IL-12 transfected MCC13 cells with isolated CD56+ NK cells demonstrated robust NK-cell expansion and low MCC cell viability after 7 daysAbstract 222 Figure 4Direct intratumoral injection with signal 2 and 3 NPs led to increases in MHC-I and MHC-II in cancer cells in vivo.Abstract 222 Figure 5NPs were administered intratumorally ± intraperitoneal aPD1 on day 9, 11, and 13 following B16F10 melanoma tumor implantation. 4-1BBL/IL12 particles in combination with αPD1 demonstrated a significant improvement in survival compared to control particles (Luc) with αPD1 (p=0.0010)ConclusionsTogether, these results show the ability of signal 2/3 NPs to reprogram MCC and melanoma cells, leading to increased MHC-I expression in vitro and in vivo, eliciting a productive immune response against cancer cells.ReferencesHughes MP, Hardee ME, Cornelius LA, Hutchins LF, Becker JC, Gao L. Merkel cell carcinoma: epidemiology, target, and therapy. Curr Dermatol 2014;46–53.Nghiem PT, Bhatia S, Lipson EJ, Kudchadkar RR, Miller NJ, Annamalai L, Berry S, Chartash EK, Daud A, Fling SP, Friedlander PA, Kluger HM, Kohrt HE, Lundgren L, Margolin K, Mitchell A, Olencki T, Pardoll DM, Reddy SA, Shantha EM, Sharfman WH, Sharon E, Shemanski LR, Shinohara MM, Sunshine JC, Taube JM, Thompson JA, Townson SM, Yearley JH, Topalian SL, Cheever MA. PD-1 blockade with pembrolizumab in advanced merkel-cell carcinoma. N Engl J Med 2016;374:2542–2552.


2021 ◽  
Author(s):  
Vural Yilmaz ◽  
Panayiota Louca ◽  
Katerina Strati

Human papillomaviruses (HPVs) are DNA viruses that ubiquitously infect humans and have been associated with hyperproliferative lesions. The recently discovered mouse specific papillomavirus, MmuPV1, provides the opportunity to study papillomavirus infections in vivo in the context of a common laboratory mouse model (Mus musculus). To date, a major challenge in the field has been the lack of tools to identify, observe and characterize individually the papillomavirus hosting cells and also trace the progeny of these cells over time. Here, we present the successful generation of an in vivo lineage-tracing model of MmuPV1-harboring cells and their progeny by means of genetic reporter activation. Following the validation of the system both in vitro and in vivo, we used it to provide a proof-of-concept of its utility. Using flow-cytometry analysis, we observed increased proliferation dynamics and decreased MHC-I cell surface expression in MmuPV1-treated tissues which could have implications in tissue regenerative capacity and ability to clear the virus. This model is a novel tool to study the biology of the MmuPV1 host-pathogen interactions.


2021 ◽  
Author(s):  
Afshin Samimi Nemati ◽  
Majid Tafrihi ◽  
Fatemeh Sheikhi ◽  
Abolfazl Rostamian Tabari ◽  
Amirhossein Haditabar

Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has currently caused a significant pandemic among worldwide populations. The transmission speed and the high rate of mortality caused by the disease necessitate studies for the rapid designing and effective vaccine production. The purpose of this study is to predict and design a novel multi-epitope vaccine against the SARS-CoV-2 virus using bioinformatics approaches. Coronavirus envelope proteins, ORF7b, ORF8, ORF10, and NSP9 were selected as targets for epitope mapping using IEDB and BepiPred 2.0 Servers. Also, molecular docking studies were performed to determine the candidate vaccine's affinity to TLR3, TLR4, MHC I, and MHC II molecules. Thirteen epitopes were selected to construct the multi-epitope vaccine. We found that the constructed peptide has valuable antigenicity, stability, and appropriate half-life. The Ramachandran plot approved the quality of the predicted model after the refinement process. Molecular docking investigations revealed that antibody-mode in the Cluspro 2.0 server showed the lowest binding energy for MHCI, MHCII, TLR3, and TLR4. This study confirmed that the designed vaccine has a good antigenicity and stability and could be a proper vaccine candidate against the COVID-19 infectious disease though, in vitro and in vivo experiments are necessary to complete and confirm our results.


2020 ◽  
Vol 17 (5) ◽  
pp. 387-395
Author(s):  
Mona Sadat Larijani ◽  
Mohammad Hassan Pouriayevali ◽  
Seyed Mehdi Sadat ◽  
Amitis Ramezani

Background: Different approaches have been investigated to develop a preventive or therapeutic vaccine, although none of them has been fully practical. Therapeutic vaccines against HIV-1 have been studied with the aim of eliminating the virus from reservoir cells with or without HAART (Highly Active Antiretroviral Therapy). Fusion proteins with the most immunogenic features among conserved regions can facilitate this achievement in such a variable virus. To achieve the most immunogenic and also conserved regions, bioinformatics tools are widely used to predict antigens’ features before applying them. Objective: This study aimed at the in vitro evaluation of p24 -Nef fusion protein based on the previous in silico design to achieve a potential therapeutic subunit vaccine against HIV-1. Methods: The truncated form of p24-Nef using AAY flexible linker and the full protein were expressed and evaluated in the prokaryotic system and confirmed by western blotting. We also used pcDNA3.1 to transfect Lenti-X 293T cells. Moreover, lentiviral vectors were applied to produce recombinant virions harboring the genes of interest and cell transduction. Results: Both fusion proteins in a truncated and a full form were expressed and confirmed by Anti Nef polyclonal antibody in western blotting. Recombinant virions were generated and transduced Lenti-X 293T cells confirming by immunofluorescence microscope and p24 ELISA assay kit. Transduced cells were analyzed by SDS-PAGE and western blotting, which resulted in approved protein expression. Conclusion: Fusion protein of p24 and Nef is well expressed in eukaryotic cell lines according to its pre-evaluated features by bioinformatics tools.


2006 ◽  
Vol 80 (9) ◽  
pp. 4469-4481 ◽  
Author(s):  
Matthias Brenner ◽  
Jan Münch ◽  
Michael Schindler ◽  
Steffen Wildum ◽  
Nicole Stolte ◽  
...  

ABSTRACT Point mutations in SIVmac239 Nef disrupting CD4 downmodulation and enhancement of virion infectivity attenuate viral replication in acutely infected rhesus macaques, but changes selected later in infection fully restore Nef function (A. J. Iafrate et al., J. Virol. 74:9836-9844, 2000). To further evaluate the relevance of these Nef functions for viral persistence and disease progression, we analyzed an SIVmac239 Nef mutant containing a deletion of amino acids Q64 to N67 (Δ64-67Nef). This mutation inactivates the N-distal AP-2 clathrin adaptor binding element and disrupts the abilities of Nef to downregulate CD4, CD28 and CXCR4 and to stimulate viral replication in vitro. However, it does not impair the downmodulation of CD3 and class I major histocompatibility complex (MHC-I) or MHC-II and the upregulation of the MHC-II-associated invariant chain, and it has only a moderate effect on the enhancement of virion infectivity. Replication of the Δ64-67Nef variant in acutely infected macaques was intermediate between grossly nef-deleted and wild-type SIVmac239. Subsequently, three of six macaques developed moderate to high viral loads and developed disease, whereas the remaining animals efficiently controlled SIV replication and showed a more attenuated clinical course of infection. Sequence analysis revealed that the deletion in nef was not repaired in any of these animals. However, some changes that slightly enhanced the ability of Nef to downmodulate CD4 and moderately increased Nef-mediated enhancement of viral replication and infectivity in vitro were observed in macaques developing high viral loads. Our results imply that both the Nef functions that were disrupted by the Δ64-67 mutation and the activities that remained intact contribute to viral pathogenicity.


mSphere ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Lucia Minoni ◽  
Maria Carmen Romero-Medina ◽  
Assunta Venuti ◽  
Cécilia Sirand ◽  
Alexis Robitaille ◽  
...  

ABSTRACT The beta human papillomaviruses (HPVs) are subdivided into 5 species (beta-1 to beta-5), and they were first identified in the skin. However, the beta-3 species appears to be more highly represented in the mucosal epithelia than in the skin. Functional studies have also highlighted that beta-3 HPV49 shares some functional similarities with mucosal high-risk (HR) HPV16. Here, we describe the characterization of the in vitro transforming properties of the entire beta-3 species, which includes three additional HPV types: HPV75, HPV76, and HPV115. HPV49, HPV75, and HPV76 E6 and E7 (E6/E7), but not HPV115 E6 and E7, efficiently inactivate the p53 and pRb pathways and immortalize or extend the life span of human foreskin keratinocytes (HFKs). As observed for HR HPV16, cell cycle deregulation mediated by beta-3 HPV E6/E7 expression leads to p16INK4a accumulation, whereas no p16INK4a was detected in beta-2 HPV38 E6/E7 HFKs. As shown for HPV49 E6, HPV75 and HPV76 E6s degrade p53 by an E6AP/proteasome-mediated mechanism. Comparative analysis of cellular gene expression patterns of HFKs containing E6 and E7 from HR HPV16, beta-3 HPV types, and beta-2 HPV38 further highlights the functional similarities of HR HPV16 and beta-3 HPV49, HPV75, and HPV76. The expression profiles of these four HPV HFKs show some similarities and diverge substantially from those of beta-3 HPV115 E6/E7 and beta-2 HPV38 E6/E7 HFKs. In summary, our data show that beta-3 HPV types share some mechanisms with HR HPV types and pave the way for additional studies aiming to evaluate their potential role in human pathologies. IMPORTANCE Human papillomaviruses are currently classified in different genera. Mucosal HPVs belonging to the alpha genus have been clearly associated with carcinogenesis of the mucosal epithelium at different sites. Beta HPV types have been classified as cutaneous. Although findings indicate that some beta HPVs from species 1 and 2 play a role, together with UV irradiation, in skin cancer, very little is known about the transforming properties of most of the beta HPVs. This report shows the transforming activity of E6 and E7 from beta-3 HPV types. Moreover, it highlights that beta-3 HPVs share some biological properties more extensively with mucosal high-risk HPV16 than with beta-2 HPV38. This report provides new paradigms for a better understanding of the biology of the different HPV types and their possible association with lesions at mucosal and/or cutaneous epithelia.


Sign in / Sign up

Export Citation Format

Share Document