Fungal Secondary Metabolites: A Promising Source of Antineoplastic Drugs

2010 ◽  
Vol 6 (3) ◽  
pp. 222-228 ◽  
Author(s):  
Hanaa Y. Ahmed ◽  
Hussin H. El Shikh ◽  
Eglal A. Ghoneimy ◽  
Ahmed M. Ragab ◽  
Ayman A. Saad ◽  
...  
2019 ◽  
Vol 3 (2) ◽  
pp. 105-111
Author(s):  
Peter M. Eze ◽  
Dominic O. Abonyi ◽  
Chika C. Abba ◽  
Peter Proksch ◽  
Festus B. C. Okoye ◽  
...  

Abstract Fungi remain a promising source of novel biologically active compounds with potentials in drug discovery and development. This study was aimed at investigating the secondary metabolites from endophytic Fusarium equiseti and Epicoccum sorghinum associated with leaves of Carica papaya collected from Agulu, Anambra State, Nigeria. Isolation of the endophytic fungi, taxonomic identification, fermentation, extraction and isolation of fungal secondary metabolites were carried out using standard procedures. Chromatographic separation and spectroscopic analyses of the fungal secondary metabolites yielded three toxigenic compounds - equisetin and its epimer 5’- epiequisetin from F. equiseti and tenuazonic acid from E. sorghinum These compounds are known to possess several beneficial biological properties that can be explored for pharmaceutical, agricultural or industrial purposes.


2008 ◽  
Vol 74 (10) ◽  
pp. 3058-3068 ◽  
Author(s):  
Daniel Krug ◽  
Gabriela Zurek ◽  
Ole Revermann ◽  
Michiel Vos ◽  
Gregory J. Velicer ◽  
...  

ABSTRACT As a monophyletic group, the myxobacteria are known to produce a broad spectrum of secondary metabolites. However, the degree of metabolic diversity that can be found within a single species remains unexplored. The model species Myxococcus xanthus produces several metabolites also present in other myxobacterial species, but only one compound unique to M. xanthus has been found to date. Here, we compare the metabolite profiles of 98 M. xanthus strains that originate from 78 locations worldwide and include 20 centimeter-scale isolates from one location. This screen reveals a strikingly high level of intraspecific diversity in the M. xanthus secondary metabolome. The identification of 37 nonubiquitous candidate compounds greatly exceeds the small number of secondary metabolites previously known to derive from this species. These results suggest that M. xanthus may be a promising source of future natural products and that thorough intraspecific screens of other species could reveal many new compounds of interest.


Fungi ◽  
2018 ◽  
pp. 318-371
Author(s):  
P.M. Cano ◽  
O. Puel ◽  
I.P. Oswald

2021 ◽  
Vol 13 (3) ◽  
pp. 11020
Author(s):  
Peter M. EZE ◽  
Ying GAO ◽  
Yang LIU ◽  
Lasse Van GEELEN ◽  
Chika P. EJIKEUGWU ◽  
...  

Extremophilic fungi have received considerable attention recently as new promising sources of biologically active compounds with potential pharmaceutical applications. This study investigated the secondary metabolites of a marine-derived Penicillium ochrochloron isolated from underwater sea sand collected from the North Sea in St. Peter-Ording, Germany. Standard techniques were used for fungal isolation, taxonomic identification, fermentation, extraction, and isolation of fungal secondary metabolites. Chromatographic separation and spectroscopic analyses of the fungal secondary metabolites yielded eight compounds: talumarin A (1), aspergillumarin A (2), andrastin A (3), clavatol (4), 3-acetylphenol (5), methyl 2,5-dihydro-4-hydroxy-5-oxo-3-phenyl-2-furanpropanoate (6), emodin (7) and 2-chloroemodin (8). After co-cultivation with Bacillus subtilis, the fungus was induced to express (-)-striatisporolide A (9). Compound 1 was evaluated for antibacterial activity against Staphylococcus aureus, Acinetobacter baumannii, Mycobacterium smegmatis, and M. tuberculosis, as well as cytotoxicity against THP-1 cells. The compound, however, was not cytotoxic to THP-1 cells and had no antibacterial activity against the microorganisms tested. The compounds isolated from P. ochrochloron in this study are well-known compounds with a wide range of beneficial biological properties that can be explored for pharmaceutical, agricultural, or industrial applications. This study highlights the bioprospecting potential of marine fungi and confirms co-cultivation as a useful strategy for the discovery of new natural products.


2009 ◽  
Vol 72 (9) ◽  
pp. 2006-2016 ◽  
Author(s):  
BULENT KABAK ◽  
ALAN D. W. DOBSON

Mycotoxins are fungal secondary metabolites that if ingested can cause a variety of adverse effects on both humans and animals, ranging from allergic responses to death. Therefore, exposure to mycotoxins should be minimized. A variety of physical, chemical, and biological methods have been developed for decontamination and/or detoxification of mycotoxins from contaminated foods and feeds. This overview details the latest developments in the biological control of both fungal infection and mycotoxin formation and describes the detoxification of many of the most important mycotoxins by microorganisms. This review also addresses the potential for use of microorganisms as mycotoxin binders in the gastrointestinal tract of both humans and animals, thereby reducing the potential deleterious effects of exposure to these toxins.


Sign in / Sign up

Export Citation Format

Share Document