scholarly journals Discovering the Hidden Secondary Metabolome of Myxococcus xanthus: a Study of Intraspecific Diversity

2008 ◽  
Vol 74 (10) ◽  
pp. 3058-3068 ◽  
Author(s):  
Daniel Krug ◽  
Gabriela Zurek ◽  
Ole Revermann ◽  
Michiel Vos ◽  
Gregory J. Velicer ◽  
...  

ABSTRACT As a monophyletic group, the myxobacteria are known to produce a broad spectrum of secondary metabolites. However, the degree of metabolic diversity that can be found within a single species remains unexplored. The model species Myxococcus xanthus produces several metabolites also present in other myxobacterial species, but only one compound unique to M. xanthus has been found to date. Here, we compare the metabolite profiles of 98 M. xanthus strains that originate from 78 locations worldwide and include 20 centimeter-scale isolates from one location. This screen reveals a strikingly high level of intraspecific diversity in the M. xanthus secondary metabolome. The identification of 37 nonubiquitous candidate compounds greatly exceeds the small number of secondary metabolites previously known to derive from this species. These results suggest that M. xanthus may be a promising source of future natural products and that thorough intraspecific screens of other species could reveal many new compounds of interest.

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4420 ◽  
Author(s):  
Giorgia Pertile ◽  
Jacek Panek ◽  
Karolina Oszust ◽  
Anna Siczek ◽  
Magdalena Frąc

The aim of the study was an analysis of the intraspecific genetic and functional diversity of the new isolated fungal strains ofP. setifera. This is the first report concerning the genetic and metabolic diversity ofPetriella setiferastrains isolated from industrial compost and the first description of a protocol for AFLP fingerprinting analysis optimised for these fungal species. The results showed a significant degree of variability among the isolates, which was demonstrated by the clearly subdivision of all the isolates into two clusters with 51% and 62% similarity, respectively. For the metabolic diversity, the BIOLOG system was used and this analysis revealed clearly different patterns of carbon substrates utilization between the isolates resulting in a clear separation of the five isolates into three clusters with 0%, 42% and 54% of similarity, respectively. These results suggest that genetic diversity does not always match the level of functional diversity, which may be useful in discovering the importance of this fungus to ecosystem functioning. The results indicated thatP. setiferastrains were able to degrade substrates produced in the degradation of hemicellulose (D-Arabinose, L-Arabinose, D-Glucuronic Acid, Xylitol, γ-Amino-Butyric Acid, D-Mannose, D-Xylose and L-Rhamnose), cellulose (α-D-Glucose and D-Cellobiose) and the synthesis of lignin (Quinic Acid) at a high level, showing their importance in ecosystem services as a decomposer of carbon compounds and as organisms, which make a significant contribution to carbon cycling in the ecosystem.The results showed for the first time that the use of molecular biology techniques (such as AFLP and BIOLOG analyses) may allow for the identification of intraspecific diversity of as yet poorly investigated fungal species with favourable consequences for our understanding their ecosystem function.


2021 ◽  
Vol 12 ◽  
Author(s):  
Poonam Kulyal ◽  
Satyabrata Acharya ◽  
Aditya B. Ankari ◽  
Praveen K. Kokkiripati ◽  
Sarada D. Tetali ◽  
...  

Background:Curcuma spp. (Zingiberaceae) are used as a spice and coloring agent. Their rhizomes and essential oils are known for medicinal properties, besides their use in the flavoring and cosmetic industry. Most of these biological activities were attributed to volatile and nonvolatile secondary metabolites present in the rhizomes of Curcuma spp. The metabolite variations among the species and even cultivars need to be established for optimized use of Curcuma spp.Objectives: We compared the phytochemical profiles of rhizomes and their essential oils to establish the variability among seven cultivars: five of Curcuma longa L. (Alleppey Supreme, Duggirala Red, Prathibha, Salem, Suguna) and two of C. aromatica Salisb. (Kasturi Araku, Kasturi Avidi). The GC-MS and LC-MS-based analyses were employed to profile secondary metabolites of these selected cultivars.Methods: Rhizomes of Curcuma spp. were subjected to hydro-distillation to collect essential oil and analyzed by GC-MS. The methanol extracts of fresh rhizomes were subjected to LC-MS analyses. The compounds were identified by using the relevant MS library databases as many compounds as possible.Results: The essential oil content of the cultivars was in the range of 0.74–1.62%. Several compounds were detected from the essential oils and rhizome extracts by GC-MS and LC-MS, respectively. Of these, 28 compounds (13 from GCMS and 15 from LCMS) were common in all seven cultivars, e.g., α-thujene, and diarylheptanoids like curcumin. Furthermore, a total of 39 new compounds were identified from C. longa L. and/or C. aromatica Salisb., most of them being cultivar-specific. Of these compounds, 35 were detected by GC-MS analyses of essential oils, 1,2-cyclohexanediol, 1-methyl-4-(1-methylethyl)-, and santolina alcohol, to name a few. The other four compounds were detected by LC-MS of the methanolic extracts of the rhizomes, e.g., kaempferol-3,7-O-dimethyl ether and 5,7,8-trihydroxy-2′,5′-dimethoxy-3′,4′-methylene dioxyisoflavanone.Conclusions: We identified and recorded the variability in the metabolite profiles of essential oils and whole rhizome extracts from the seven cultivars of Curcuma longa L. and C. aromatica Salisb. As many as 39 new metabolites were detected in these seven Indian cultivars of Curcuma spp. Many of these compounds have health benefits.


2019 ◽  
Vol 19 (28) ◽  
pp. 2554-2566 ◽  
Author(s):  
Aurelio Ortiz ◽  
Estibaliz Sansinenea

Background:: Candida species are in various parts of the human body as commensals. However, they can cause local mucosal infections and, sometimes, systemic infections in which Candida species can spread to all major organs and colonize them. Objective:: For the effective treatment of the mucosal infections and systemic life-threatening fungal diseases, a considerably large number of antifungal drugs have been developed and used for clinical purposes that comprise agents from four main drug classes: the polyenes, azoles, echinocandins, and antimetabolites. Method: : The synthesis of some of these drugs is available, allowing synthetic modification of the molecules to improve the biological activity against Candida species. The synthetic methodology for each compound is reviewed. Results: : The use of these compounds has caused a high-level resistance against these drugs, and therefore, new antifungal substances have been described in the last years. The organic synthesis of the known and new compounds is reported. Conclusion: : This article summarizes the chemistry of the existing agents, both the old drugs and new drugs, in the treatment of infections due to C. albicans, including the synthesis of the existing drugs.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1340
Author(s):  
Ying Kong ◽  
Huan Wang ◽  
Lixin Lang ◽  
Xiaoying Dou ◽  
Jinrong Bai

The bulbs of several Lilium species are considered to be both functional foods and traditional medicine in northern and eastern Asia. Considering the limited information regarding the specific bioactive compounds contributing to the functional properties of these bulbs, we compared the secondary metabolites of ten Lilium bulb samples belonging to five different species, using an ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS)-based secondary metabolomics approach. In total, 245 secondary metabolites were detected; further, more metabolites were detected from purple Lilium bulbs (217 compounds) than from white bulbs (123–171 compounds). Similar metabolite profiles were detected in samples within the same species irrespective of where they were collected. By combining herbal analysis and screening differential metabolites, steroid saponins were considered the key bioactive compounds in medicinal lilies. Of the 14 saponins detected, none were accumulated in the bulbs of L. davidii var. willmottiae, also called sweet lily. The purple bulbs of L. regale accumulated more secondary metabolites, and, notably, more phenolic acid compounds and flavonoids. Overall, this study elucidates the differential metabolites in lily bulbs with varying functions and colors and provides a reference for further research on functional foods and the medicinal efficacy of Lilium species.


Toxins ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 133 ◽  
Author(s):  
Annika Jagels ◽  
Viktoria Lindemann ◽  
Sebastian Ulrich ◽  
Christoph Gottschalk ◽  
Benedikt Cramer ◽  
...  

The genus Stachybotrys produces a broad diversity of secondary metabolites, including macrocyclic trichothecenes, atranones, and phenylspirodrimanes. Although the class of the phenylspirodrimanes is the major one and consists of a multitude of metabolites bearing various structural modifications, few investigations have been carried out. Thus, the presented study deals with the quantitative determination of several secondary metabolites produced by distinct Stachybotrys species for comparison of their metabolite profiles. For that purpose, 15 of the primarily produced secondary metabolites were isolated from fungal cultures and structurally characterized in order to be used as analytical standards for the development of an LC-MS/MS multimethod. The developed method was applied to the analysis of micro-scale extracts from 5 different Stachybotrys strains, which were cultured on different media. In that process, spontaneous dialdehyde/lactone isomerization was observed for some of the isolated secondary metabolites, and novel stachybotrychromenes were quantitatively investigated for the first time. The metabolite profiles of Stachybotrys species are considerably influenced by time of growth and substrate availability, as well as the individual biosynthetic potential of the respective species. Regarding the reported adverse effects associated with Stachybotrys growth in building environments, combinatory effects of the investigated secondary metabolites should be addressed and the role of the phenylspirodrimanes re-evaluated in future research.


2021 ◽  
Vol 11 (2) ◽  
pp. 570
Author(s):  
Leandro W. Figueira ◽  
Beatriz H. D. Panariello ◽  
Cristiane Y. Koga-Ito ◽  
Simone Duarte

This study aimed to determine how low-temperature plasma (LTP) treatment affects single- and multi-species biofilms formed by Streptococcus mutans, Streptococcus sanguinis, and Streptococcus gordonii formed on hydroxyapatite discs. LTP was produced by argon gas using the kINPen09™ (Leibniz Institute for Plasma Science and Technology, INP, Greifswald, Germany). Biofilms were treated at a 10 mm distance from the nozzle of the plasma device to the surface of the biofilm per 30 s, 60 s, and 120 s. A 0.89% saline solution and a 0.12% chlorhexidine solution were used as negative and positive controls, respectively. Argon flow at three exposure times (30 s, 60 s, and 120 s) was also used as control. Biofilm viability was analyzed by colony-forming units (CFU) recovery and confocal laser scanning microscopy. Multispecies biofilms presented a reduction in viability (log10 CFU/mL) for all plasma-treated samples when compared to both positive and negative controls (p < 0.0001). In single-species biofilms formed by either S. mutans or S. sanguinis, a significant reduction in all exposure times was observed when compared to both positive and negative controls (p < 0.0001). For single-species biofilms formed by S. gordonii, the results indicate total elimination of S. gordonii for all exposure times. Low exposure times of LTP affects single- and multi-species cariogenic biofilms, which indicates that the treatment is a promising source for the development of new protocols for the control of dental caries.


2001 ◽  
Author(s):  
P. V. Skudarnov ◽  
H. J. Kang ◽  
C. X. Lin ◽  
M. A. Ebadian ◽  
P. W. Gibbons ◽  
...  

Abstract In the course of the U.S. Department of Energy’s (DOE) tank waste retrieval, immobilization, and disposal activities, high-level waste transfer lines have the potential to become plugged. In response to DOE’s needs, Florida International University’s Hemispheric Center for Environmental Technology (FIU-HCET) is studying the mechanism and behavior of pipeline plugging to determine the pipeline operating conditions for safe slurry transport. Transport behavior of multi-species slurry has been studied in a 1-in O.D. pipeline flow loop. The slurry was a five-species mixture of Fe2O3, Al2O3, MnO2, Ni2O3, and SiO2, which simulated actual waste at the Savannah River DOE site. The relationship between the pressure drop in the straight horizontal sections of the flow loop and the mean slurry flow velocity was determined for two solids volume concentrations of 5.2 and 7.8%. Critical deposition velocity was measured from visual observations. An existing empirical model that predicts the pressure gradient for a single-species slurry flow in a horizontal pipeline was used to describe the pressure drop data.


2019 ◽  
Author(s):  
Andrew S. Urquhart ◽  
Jinyu Hu ◽  
Yit-Heng Chooi ◽  
Alexander Idnurm

AbstractBackgroundViriditoxin is one of the ‘classical’ secondary metabolites produced by fungi and that has antibacterial and other activities; however, the mechanism of its biosynthesis has remained unknown.ResultsHere, a gene cluster responsible for its synthesis was identified, using bioinformatic approaches from two species that produce viriditoxin and then through gene disruption and metabolite profiling. All eight genes in the cluster inPaecilomyces variotiiwere mutated, revealing their roles in the synthesis of this molecule and establishing its biosynthetic pathway which includes an interesting Baeyer-Villiger monooxygenase catalyzed reaction. Additionally, a candidate catalytically-inactive hydrolase was identified as being required for the stereoselective biosynthesis of (M)-viriditoxin. The localization of two proteins were assessed by fusing these proteins to green fluorescent protein, revealing that at least two intracellular structures are involved in the compartmentalization of the synthesis steps of this metabolite.ConclusionsThe full pathway for synthesis of viriditoxin was established by a combination of genomics, bioinformatics, gene disruption and chemical analysis processes. Hence, this work reveals the basis for the synthesis of an understudied class of fungal secondary metabolites and provides a new model species for understanding the synthesis of biaryl compounds with a chiral axis.


Author(s):  
Ye Wang ◽  
Xin-jing Yue ◽  
Shu-fei Yuan ◽  
Yu Hong ◽  
Wei-feng Hu ◽  
...  

The biosynthetic genes for secondary metabolites are often clustered into giant operons with no transcription terminator before the end. The long transcripts are frangible and the transcription efficiency declines along with the process. Internal promoters might occur in operons to coordinate the transcription of individual genes, but their effects on the transcription of operon genes and the yield of metabolites have been less investigated. Epothilones are a kind of antitumor polyketides synthesized by seven multifunctional enzymes encoded by a 56-kb operon. In this study, we identified multiple internal promoters in the epothilone operon. We performed CRISPR-dCas9–mediated transcription activation of internal promoters, combined activation of different promoters, and activation in different epothilone-producing M. xanthus strains. We found that activation of internal promoters in the operon was able to promote the gene transcription, but the activation efficiency was distinct from the activation of separate promoters. The transcription of genes in the operon was influenced by not only the starting promoter but also internal promoters of the operon; internal promoters affected the transcription of the following and neighboring upstream/downstream genes. Multiple interferences between internal promoters thus changed the transcriptional profile of operon genes and the production of epothilones. Better activation efficiency for the gene transcription and the epothilone production was obtained in the low epothilone-producing strains. Our results highlight that interactions between promoters in the operon are critical for the gene transcription and the metabolite production efficiency.


Sign in / Sign up

Export Citation Format

Share Document