Cystic Fibrosis: New Insights into Therapeutic Approaches

2020 ◽  
Vol 15 (3) ◽  
pp. 174-186
Author(s):  
Antonella Tosco ◽  
Valeria R. Villella ◽  
Valeria Raia ◽  
Guido Kroemer ◽  
Luigi Maiuri

Since the identification of Cystic Fibrosis (CF) as a disease in 1938 until 2012, only therapies to treat symptoms rather than etiological therapies have been used to treat the disease. Over the last few years, new technologies have been developed, and gene editing strategies are now moving toward a one-time cure. This review will summarize recent advances in etiological therapies that target the basic defect in the CF Transmembrane Receptor (CFTR), the protein that is mutated in CF. We will discuss how newly identified compounds can directly target mutated CFTR to improve its function. Moreover, we will discuss how proteostasis regulators can modify the environment in which the mutant CFTR protein is synthesized and decayed, thus restoring CFTR function. The future of CF therapies lies in combinatory therapies that may be personalized for each CF patient.

Breathe ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. 210112
Author(s):  
Daniel H. Tewkesbury ◽  
Rebecca C. Robey ◽  
Peter J. Barry

The genetic multisystem condition cystic fibrosis (CF) has seen a paradigm shift in therapeutic approaches within the past decade. Since the first clinical descriptions in the 1930s, treatment advances had focused on the downstream consequences of a dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) chloride ion channel. The discovery of the gene that codes for CFTR and an understanding of the way in which different genetic mutations lead to disruption of normal CFTR function have led to the creation and subsequent licensing of drugs that target this process. This marks an important move towards precision medicine in CF and results from clinical trials and real-world clinical practice have been impressive. In this review we outline how CFTR modulator drugs restore function to the CFTR protein and the progress that is being made in this field. We also describe the real-world impact of CFTR modulators on both pulmonary and multisystem complications of CF and what this will mean for the future of CF care.


2021 ◽  
Vol 12 ◽  
Author(s):  
J. Mercier ◽  
M. Ruffin ◽  
H. Corvol ◽  
L. Guillot

Cystic fibrosis (CF) is a rare genetic disease that affects several organs, but lung disease is the major cause of morbidity and mortality. The gene responsible for CF, the CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) gene, has been discovered in 1989. Since then, gene therapy i.e., defective gene replacement by a functional one, remained the ultimate goal but unfortunately, it has not yet been achieved. However, patients care and symptomatic treatments considerably increased CF patients’ life expectancy ranging from 5 years old in the 1960s to 40 today. In the last decade, research works on CFTR protein structure and activity led to the development of new drugs which, by readdressing CFTR to the plasma membrane (correctors) or by enhancing its transport activity (potentiators), allow, alone or in combination, an improvement of CF patients’ lung function and quality of life. While expected, it is not yet known whether taking these drugs from an early age and for years will improve the quality of life of CF patients in the long term and further increase their life expectancy. Besides, these molecules are not available (specific variants of CFTR) or accessible (national health policies) for all patients and there is still no curative treatment. Another alternative that could benefit from new technologies, such as gene therapy, is therefore still attractive, although it is not yet offered to patients. Faced with the development of new CFTR correctors and potentiators, the question arises as to whether there is still a place for gene therapy and this is discussed in this perspective.


2019 ◽  
Vol 10 ◽  
Author(s):  
Iwona Pranke ◽  
Anita Golec ◽  
Alexandre Hinzpeter ◽  
Aleksander Edelman ◽  
Isabelle Sermet-Gaudelus

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Harisha Kosanam ◽  
Ananya Udyaver ◽  
Waliya Muhammad

Cystic Fibrosis (CF) is a genetically inherited chronic disease that causes the production of a thick and sticky mucus primarily in the lungs. The condition tends to become worse over time. Clogged lungs and other internal organs result in breathing issues, susceptibility to infections, digestive problems, and lack of nutrition. CF is an autosomal recessive disease, indicating that an individual must inherit two copies of the defective Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene, which then encodes for a malfunctioning CFTR protein. Because of the large number of CF patients that cannot be treated with these CFTR modulators, using gene editing to directly target the mutation can be more effective and efficient in treating cystic fibrosis. In this paper, we will discuss the promises and limitations for using gene editing as a treatment for CF.


2020 ◽  
Vol 32 (2) ◽  
pp. 192 ◽  
Author(s):  
I. Viotti Perisse ◽  
Z. Fan ◽  
A. Van Wettere ◽  
Z. Wang ◽  
A. Harris ◽  
...  

Cystic fibrosis (CF) is an autosomal recessive genetic disease that affects over 30 000 people in the United States and is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The CFTR protein is a cAMP-regulated C− channel responsible for regulation of anion transport, primarily in the epithelial cells. We have previously generated a sheep model of CF by genetically inactivating the CFTR gene (Fan et al. 2018 JCI Insight 3, e123529). The newborn CFTR −/− sheep develops severe disease consistent with CF pathology in humans. The CF model is extremely valuable for understanding the developmental aspects of CF disease, as sheep have been used extensively in the study of human fetal growth and development. Sheep, like humans, typically give birth to only one or two offspring in each pregnancy, which make them more suitable than many other species for testing prenatal gene-editing treatments. Thus, in this new study, we are working on the generation of F508del sheep CF model. The F508del mutation was chosen because it is the most common mutation in the human CFTR gene (~70%). This mutation is characterised by the deletion of the CTT nucleotides, which ultimately deletes the phenylalanine residue at position 508. The F508del mutation causes misfolding of the CFTR protein, which is further degraded by proteases. Even though several CFTR modulators are available, they are not effective in all patients. Additionally, they cannot reverse deleterious prenatal CF manifestations. Hence, this model will be valuable for evaluating both prenatal drug and gene therapies. Here, we used a CRISPR/Cas9 gene-editing approach to introduce the F508del mutation into the sheep genome. We designed an sgRNA targeting exon 11 of the sheep CFTR gene using the Benchling software (https://benchling.com/academic). The sgRNA was synthesised by Synthego and Cas9 purchased from ThermoFisher. Using the Lonza-4D-Nucleofector system, Cas9/sgRNA ribonucleoprotein complex was transfected into sheep fetal fibroblasts (SFFs), along with 100bp single-stranded oligodeoxynucleotide, flanking the F508del mutation, for the homology-directed repair. The transfected cells were subsequently cultured in Dulbecco's modified Eagle's medium, supplemented with 15% fetal bovine serum and 1% penicillin, and incubated at 38.5°C. Two days post-transfection, SFFs were seeded individually into five 96-well plates by limited dilution. After seven days, the individual colonies were expanded into 24-well plates and cultured for three more days. A total of 56 single-cell-derived SFF colonies were isolated. The presence of F508del mutation was confirmed by amplifying the PCR products of the exon 11 flanking the mutation site and subjecting each amplicon to Sanger sequencing. The sequencing results indicated that the indels (insertion/deletion) were introduced in 49 out of 56 (87.5%) of the colonies, and four (7.14%) of them were confirmed to have biallelic F508del mutations based on sequencing peaks. Therefore, we successfully introduced the F508del mutation in SFFs that will be used for the production of F508del CF sheep by somatic cell nuclear transfer.


2001 ◽  
Vol 6 (3) ◽  
pp. 172-176 ◽  
Author(s):  
Lawrence A. Pervin

David Magnusson has been the most articulate spokesperson for a holistic, systems approach to personality. This paper considers three concepts relevant to a dynamic systems approach to personality: dynamics, systems, and levels. Some of the history of a dynamic view is traced, leading to an emphasis on the need for stressing the interplay among goals. Concepts such as multidetermination, equipotentiality, and equifinality are shown to be important aspects of a systems approach. Finally, attention is drawn to the question of levels of description, analysis, and explanation in a theory of personality. The importance of the issue is emphasized in relation to recent advances in our understanding of biological processes. Integrating such advances into a theory of personality while avoiding the danger of reductionism is a challenge for the future.


2000 ◽  
Vol 45 (4) ◽  
pp. 437-439
Author(s):  
Michele Knobel
Keyword(s):  

Impact ◽  
2018 ◽  
Vol 2018 (3) ◽  
pp. 52-54
Author(s):  
Nicolas Lamontagne

Cystic fibrosis (CF) is a progressive life–shortening disease caused by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene leading to a dysfunctional CFTR protein. The disease affects over 70,000 patients worldwide and while many mutations are known, the F508del mutation affects 90% of all patients. The absence of CFTR in the plasma membrane leads to a dramatic decrease in chloride efflux, resulting in viscous mucus that causes severe symptoms in vital organs like the lungs and intestines. For CF patients that suffer from the life threatening F508del mutation only palliative treatment exist. PRO–CF–MED addresses the specific challenge of this call by introducing the first disease modifying medication for the treatment of the CF patients with F508del mutation. The PRO–CF–MED project has been designed to assess the potential clinical efficacy of QR–010, an innovative disease modifying oligonucleotide–based treatment for F508del patients. Partners within PRO–CF–MED have generated very promising preclinical evidence for QR–010 which allows for further clinical assessment of QR–010 in clinical trials. PRO–CF–MED will enable the fast translation of QR–010 towards clinical practice and market authorisation. PRO–CF–MED has the potential to transform this life–threatening condition into a manageable one.


2021 ◽  
Vol 116 (1) ◽  
Author(s):  
Marius Keller ◽  
Valbona Mirakaj ◽  
Michael Koeppen ◽  
Peter Rosenberger

AbstractCardiovascular pathologies are often induced by inflammation. The associated changes in the inflammatory response influence vascular endothelial biology; they complicate the extent of ischaemia and reperfusion injury, direct the migration of immune competent cells and activate platelets. The initiation and progression of inflammation is regulated by the classical paradigm through the system of cytokines and chemokines. Therapeutic approaches have previously used this knowledge to control the extent of cardiovascular changes with varying degrees of success. Neuronal guidance proteins (NGPs) have emerged in recent years and have been shown to be significantly involved in the control of tissue inflammation and the mechanisms of immune cell activation. Therefore, proteins of this class might be used in the future as targets to control the extent of inflammation in the cardiovascular system. In this review, we describe the role of NGPs during cardiovascular inflammation and highlight potential therapeutic options that could be explored in the future.


Sign in / Sign up

Export Citation Format

Share Document