Ginger (Zingiber Officinale) Decreases Antioxidant Activity of Black and Green Tea

2019 ◽  
Vol 14 (5) ◽  
pp. 386-390
Author(s):  
Javad Aliakbarlu ◽  
Surur K. Sadaghiani ◽  
Shadieh Mohammadi
2018 ◽  
Vol 24 (2) ◽  
pp. 69-75
Author(s):  
Hyeon Jae Yoo ◽  
◽  
Ha Sook Chung ◽  

2006 ◽  
Vol 54 (8) ◽  
pp. 2951-2956 ◽  
Author(s):  
Jun Seong Park ◽  
Ho Sik Rho ◽  
Duck Hee Kim ◽  
Ih Seop Chang

2021 ◽  
Vol 68 (1) ◽  
pp. 126-136
Author(s):  
U. Chasanah ◽  
N. Mahmintari ◽  
F. Hidayah ◽  
F.A. El Maghfiroh ◽  
D. Rahmasari ◽  
...  

Abstract This study aimed to prepare a niosomal gel of green tea (Camellia sinensis) extract containing catechins, mostly epigallocatechin-3-gallate (ECGC), as a potent antioxidant. Niosomes can increase EGCG's stability and penetration into the skin for a better therapeutic effect. Niosomes were prepared by a thin-layer hydration method, were evaluated for their vesicle shape, particle size, polydispersity index, zeta potential and entrapment efficiency, and then incorporated into gels using sodium alginate as a gelling agent. Three niosomal gel formulations were prepared with different concentrations of niosomes green tea extract. Afterwards, organoleptic properties, chemical and physical characteristics, antioxidant activity, and stability and irritability of the niosomal gels were investigated. The different concentrations of green tea extract had a significant effect on the physical characteristics, but not on the chemical ones. Its antioxidant activity was determined using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging method. The 50% extract green tea niosomes gel showed the highest inhibition value (25.13%). The stability was determined by freeze–thaw and real-time methods; they showed a decrease in pH, but still within the pH range of skin. The irritability test used was the Hen's Egg Test-Chorioallantoic Membrane (HET-CAM) method, which showed no irritation for all formulas. In conclusion, 50% green tea extract niosomes gel results showed it to be the best formulation with optimal antioxidant results.


2018 ◽  
Vol 23 (3) ◽  
pp. 124
Author(s):  
Fransiska Lisa Anindya Putri ◽  
Akhmad Kharis Nugroho ◽  
Erna Prawita Setyowati

Green tea (Camellia sinensis L.) is known to have ability to protect skin against free radicals. This is supported by polyphenol compound catechin. This research aims to determine the optimum Hydrophilic-Lipophilic Balance (HLB) value of Tween 60 and Span 80 compositions on the optimum cream formula of ethanol extract of green tea leaves. Tea leaves are extracted by macerating using 70% ethanol. Catechin in extract is known from Thin Layer Chromatography (TLC) test with silica gel 60 F254 as stationary phase and ethyl acetate:aquadest:formic acid (18:1:1 v/v) as mobile phase. Antioxidant activity is determined by 2,2-Diphenyl-1-picryhydrazyl (DPPH) method and value of Inhibition Concentration 50% (IC50) is then calculated. Formula optimization using Design Expert® version 7.1.5 (DX 7) software, Simplex Lattice Design (SLD) method with two components Tween 60 and Span 80. Cream is characterized according to physical properties organoleptic, homogeneity, viscosity, pH, spreadability, adhesiveness, and cream type. The optimum formula obtained is then tested for physical stability for 4 weeks at room temperature (28±2°C) and data are statistically analyzed using one-way ANOVA. The extract contains catechin proved with Retention factor (Rf) value 0.8 and has antioxidant activity with IC50 value 56.35 ppm. 6.4% Tween 60 and 3.6% Span 80 result an optimum HLB value 11.1. It has viscosity 2897.50±35.94 mPa.s, spreadability 18.44±0.06 cm2, adhesiveness 0.85±0.05 seconds, and pH 4.530±0.002. Statistical test shows that the cream is significantly altered at pH, but does not significantly change in viscosity, spreadability, and adhesiveness after being stored for 4 weeks.


2011 ◽  
Vol 194-196 ◽  
pp. 734-741
Author(s):  
Li Na Yu ◽  
Dong Feng Wang ◽  
Qing Li Yang ◽  
Hai Yan Li ◽  
Bing Jie Liu ◽  
...  

The purpose of this paper is to investigate a new type of resin of chitosan cerium encapsulated green tea extract microspheres (RCCM-GTE) prepared by the reversed-phase suspension cross-linking polymerization and study the scavenging activity against DPPH free radical. The results showed that RCCM-GTE was a type of deep brown-yellow spherical resin with smooth surface and it presented uniform and narrow particle size distribution as determined by the Laser Particles Sizer. The Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES), Fourier Transform Infrared Spectroscopy (FT-IR) and differential scanning calorimetry (DSC) study demonstrated that there was cerium existing in RCCM-GTE. The polyphenolic compounds existed in RCCM-GTE and the total content of polyphenolic compounds encapsulated in RCCM-GTE was found to be 92.550±1.145 μg/g. It is considered that the good antioxidant activity of RCCM-GTE was the comprehensive results of the action of tea polysaccharide-protein conjugate, polyphenolic compounds, cerium and Schiff base chitosan. Investigation showed that a lot of extracts coming from agriculture and food industry contain reactive components of polyphenolic compounds and polysaccharides. It can be effective in protection of human beings from free radical damage if these extracts are directly or after the extraction and purification added to food as natural food antioxidant or they are prepared micospheres reacted with some biopolymers through coordination as a health food. Then the emerging area of research on encapsulating GTE in chitosan cerium resin must have a broad developing prospect.


2020 ◽  
Vol 85 (10) ◽  
pp. 3415-3422
Author(s):  
Maryam Keshavarzi ◽  
Gholamhassan Najafi ◽  
Hassan Ahmadi Gavlighi ◽  
Pourya Seyfi ◽  
Hamid Ghomi

Sign in / Sign up

Export Citation Format

Share Document