Synthesis, antitrypanosomal and antimycobacterial activities of coumarinic N-acylhydrazonic derivatives

2020 ◽  
Vol 16 ◽  
Author(s):  
Camila Capelini ◽  
Vitória R. F. Câmara ◽  
José D. Figueroa Villar ◽  
Juliana M. C. Barbosa ◽  
Kelly Salomão ◽  
...  

Background: Near to 5-7 million people are infected with T. cruzi in the world, and about 10,000 people per year die of problems associated to this disease. Method: We reported herein the synthesis, antitrypanosomal and antimycobacterial activities of seventeen coumarinic N-acylhydrazonic derivatives. Results: These compounds were synthesized using methodology with reactions global yields ranging from 46%-70%. T. cruzi in vitro effect were evaluated against trypomastigote and amastigote forms and M. tuberculosis activity were towards H37Rv sensitive strain and resistant strains. Discussion: Against T. cruzi, the more active compounds revealed only moderate activity IC50/96h~20 µM for both trypomastigotes and amastigotes intracellular forms. (E)-2-oxo-N'-(3,4,5-trimethoxybenzylidene)-2H-chromene-3-carbohydrazide showed meaningful activity in INH resistant/RIP resistant strain. Conclusion: These compound acting as multitarget could be good leads for the development of new trypanocidal and bactericidal agents.

1999 ◽  
Vol 43 (9) ◽  
pp. 2328-2331 ◽  
Author(s):  
Michel Frederich ◽  
Marie-Pierre Hayette ◽  
Monique Tits ◽  
Patrick De Mol ◽  
Luc Angenot

ABSTRACT The in vitro antimalarial activities of 46 alkaloids and extracts from Strychnos species were evaluated. Two types of quasidimeric alkaloids exhibit high and selective activities againstPlasmodium. Strychnopentamine and isostrychnopentamine were active against chloroquine-sensitive and -resistant strains (50% inhibitory concentration [IC50] ≈ 0.15 μM), while dihydrousambarensine exhibited a 30-fold higher activity against the chloroquine-resistant strain (IC50 = 0.03 μM) than it did against the chloroquine-sensitive strain.


Parasitology ◽  
1959 ◽  
Vol 49 (1-2) ◽  
pp. 143-152 ◽  
Author(s):  
M. A. Soltys

Antibody-resistant strains are less sensitive to suramin and antrycide than antibody-sensitive strains. When living trypanosomes were exposed to suramin and antrycide in vitro, antibody-resistant strains needed 50 times more drugs than antibody-sensitive trypanosomes in order to make them non-infectious to mice. In therapeutic experiments in mice the minimal therapeutic dose of drugs for antibody-sensitive strains was 0·1 mg. but for resistant strains it was 0·3 mg./20 g. mice. Rabbits treated prophylactically with suramin resisted infection with the antibody-sensitive strain for a period of 4 months, but failed to resist infection with the antibody-resistant strain after 2 months.Rabbits treated prophylactically with antrycide pro-salt, resisted infection with antibody-sensitive strains for a period of 2 months, but failed to resist infection with the antibody-resistant strain even 1 month after injection with the drug. Although trypanosomes can become drug resistant without being antibody resistant it is suggested that, under natural conditions, drug-resistant strains in animals and man develop from antibody-resistant strains, particularly when trypanostatic drugs are used. It is suggested in conclusion from these experiments that strains of trypanosomes which are exposed for some time to antibodies and become antibody resistant after passage through animals like rabbits, as well as those strains frequently passaged through mice, should be used in all tests for the efficiency of chemotherapeutic drugs.


2012 ◽  
Vol 4 (1) ◽  
pp. 13 ◽  
Author(s):  
Tatiane S. Coelho ◽  
Jessica B. Cantos ◽  
Marcelle L.F. Bispo ◽  
Raoni S.B. Gonçalves ◽  
Camilo H.S. Lima ◽  
...  

A series of twenty-three <em>N-acylhydrazones</em> derived from isoniazid (INH 1-23) have been evaluated for their <em>in vitro</em> antibacterial activity against INH- susceptible strain of <em>M. tuberculosis</em> (RG500) and three INH-resistant clinical isolates (RG102, RG103 and RG113). In general, derivatives 4, 14, 15 and 16 (MIC=1.92, 1.96, 1.96 and 1.86 mM, respectively) showed relevant activities against RG500 strain, while the derivative 13 (MIC=0.98 mM) was more active than INH (MIC=1.14 mM). However, these derivatives were inactive against RGH102, which displays a mutation in the coding region of <em>inhA</em>. These results suggest that the activities of these compounds depend on the inhibition of this enzyme. However, the possibility of other mechanisms of action cannot be excluded, since compounds 2, 4, 6, 7, 12-17, 19, 21 and 23 showed good activities against <em>katG</em>-resistant strain RGH103, being more than 10-fold more active than INH.


1982 ◽  
Vol 156 (4) ◽  
pp. 1235-1249 ◽  
Author(s):  
G R Harriman ◽  
E R Podack ◽  
A I Braude ◽  
L C Corbeil ◽  
A F Esser ◽  
...  

Interaction of the human complement system in normal human serum (NHS) with serum-resistant and -sensitive Neisseria gonorrhoeae was evaluated to better understand the mechanism of serum-resistance. Complement activity (CH50) was depleted from NHS in a dose-dependent fashion by both serum-resistant and -sensitive N. gonorrhoeae. No detectable CH50 remained in NHS incubated with 10(9) colony-forming units (CFU)/ml serum of either resistant or sensitive strains. When smaller numbers of bacteria were incubated with NHS, lesser, yet comparable, amounts of CH50 were depleted by both resistant and sensitive strains. Hemolytic C2 activity was diminished by 33% in the case of resistant N. gonorrhoeae (10(8) CFU/ml serum) and by 48% in the case of a sensitive strain. No detectable decreases in hemolytic C4 or C7 activities were found with either sensitive or resistant strains at this concentration. Both resistant and sensitive strains activated C1s in NHS. Resistant strains specifically activated 19-21% of radiolabeled C1s in NHS, whereas sensitive strains activated 18-32%. Both resistant and sensitive strains also activated C5 in NHS. In binding assays using radiolabeled C5 and C9 in NHS, resistant and sensitive strains bound comparable amounts of C5 and C9. The number of bound C5 and C9 molecules varied according to the number of bacteria or amount of serum used in the assay. The ratio of C9/C5 bound to a sensitive strain was 6.8, and to a resistant strain was 8.2, suggesting that C5 and C9 were incorporated into membrane attack complexes (MAC). Electron microscopic examination of resistant and sensitive strains incubated with NHS revealed that MAC is bound to the surfaces of the resistant strain as well as the sensitive strain.


1960 ◽  
Vol 153 (951) ◽  
pp. 205-219 ◽  

This study is a continuation of the results published previously (Sevag & Ishii 1958). It surveys quantitatively the extracellular and intracellular accumulation of p -aminobenzoic acid (PAB), pteridine, folic acid (FA) and citrovorum factor (CF) of the various sulphathiazole (ST)-sensitive and ST-resistant strains of Escherichia coli grown with and without ST. The altered enzymic activities of the resistant strain with respect to growth factor requirement is also determined. The following observations are made. The utilization of the exogenous PAB by the PAB-dependent strain is followed by the multiplication of cells. These events are followed by the extracellular accumulation of FA first and then CF. This pattern applies to other strains of E. coli and is in accordance with the well-known sequence of steps involved in the synthesis of PAB, pteridine, FA, CF and growth. It is shown that PAB accumulates principally extracellularly, and pteridine principally intracellularly. The synthesis of FA by the resistant strain is at least tenfold more resistant to ST than in the sensitive strain. In the resistant strain there is a greater intracellular than extracellular accumulation of FA and CF. In the sensitive strain this relationship is reversed. The resistant strains are inheritably capable of synthesizing greater amounts of pteridine, FA and CF. The PAB-dependent ST-sensitive strain can utilize a combination of 1-methionine and any of the purines, of 1-methionine alone, or vitamin B 12 alone in place of PAB for a partial or full growth. The related resistant strain, on the other hand, is unable to multiply in the salts-glucose medium with and without PAB. It requires a combination of 1-methionine and glycine for growth which cannot be replaced by any of the factors mentioned above. This requirement of the resistant strain for growth is analyzed as a deficiency of the enzymic transmethylations and transhydroxymethylation involving the function of CF in the resistant strain.


2004 ◽  
Vol 48 (1) ◽  
pp. 80-85 ◽  
Author(s):  
E. Azoulay-Dupuis ◽  
J. Mohler ◽  
J. P. Bédos

ABSTRACT The efficacy of BB-83698, a novel potent peptide deformylase inhibitor, was evaluated in a mouse model of acute pneumonia. The Streptococcus pneumoniae isolates tested included four virulent strains (one penicillin-susceptible wild-type strain, one macrolide-resistant strain, and two quinolone-resistant mutants [a mutant carrying mutations in ParC and GyrA and an efflux mutant] isogenic to the wild type) and two poorly virulent penicillin-resistant strains. Pneumonia was induced by intratracheal inoculation of 105 CFU (virulent strains) into immunocompetent mice or 107 CFU (less virulent strains) into leukopenic mice. Animals received three or six subcutaneous injections of antibiotics at 12- or 24-h intervals, with antibiotic treatment initiated at 3, 6, 12, or 18 h postinfection (p.i.). BB-83698 showed potent in vitro activity against all strains (MICs, 0.06 to 0.25 μg/ml). In the in vivo model, all control animals died within 2 to 5 days of infection. BB-83698 (80 mg/kg of body weight twice daily or 160 mg/kg once daily) protected 70 to 100% of the animals, as measured 10 days p.i., regardless of the preexisting resistance mechanisms. In contrast, the survival rates for animals treated with the comparator antibiotics were 30% for animals treated with erythromycin (100 mg/kg) and infected with the macrolide-resistant strain, 34% for animals treated with amoxicillin (200 mg/kg every 8 h) and infected with the penicillin-resistant strain, and 0 and 78% for animals treated with ciprofloxacin (250 mg/kg) and infected with the ParC and GyrA mutant and the efflux mutant, respectively. At 80 mg/kg, BB-83698 generated a peak concentration in lung tissue of 61.9 μg/ml within 1 h and areas under the concentration-times curves of 57.4 and 229.4 μg · h/ml for plasma and lung tissue, respectively. The emergence of S. pneumoniae isolates with reduced susceptibilities to BB-83698 was not observed following treatment with a suboptimal dosing regimen. In conclusion, the potent in vitro activity of BB-83698 against S. pneumoniae, including resistant strains, translates into good in vivo efficacy in a mouse pneumonia model.


2001 ◽  
Vol 45 (1) ◽  
pp. 212-216 ◽  
Author(s):  
Harumi Gomi ◽  
Zhi-Dong Jiang ◽  
Javier A. Adachi ◽  
David Ashley ◽  
Brett Lowe ◽  
...  

ABSTRACT The emergence of resistant enteropathogens has been reported worldwide. Few data are available on the contemporary in vitro activities of commonly used antimicrobial agents against enteropathogens causing traveler's diarrhea (TD). The susceptibility patterns of antimicrobial agents currently available or under evaluation against pathogens causing TD in four different areas of the world were evaluated. Pathogens were identified in stool samples from U.S., Canadian, or European adults (18 years of age or older) with TD during 1997, visiting India, Mexico, Jamaica, or Kenya. MICs of 11different antimicrobials were determined against 284 bacterial enteropathogens by the agar dilution method. Ciprofloxacin, levofloxacin, ceftriaxone, and azithromycin were highly active in vitro against the enteropathogens, while traditional antimicrobials such as ampicillin, trimethoprim, and trimethoprim/sulfamethoxazole showed high levels and high frequencies of resistance. Rifaximin, a promising and poorly absorbable drug, had an MIC at which 90% of the strains tested were inhibited of 32 μg/ml, 250 times lower than the concentration of this drug in the stools. Amdinocillin, nalidixic acid, and doxycycline showed moderate activity. Fluoroquinolones are still the drugs of choice for TD in most regions of the world, although our study has a limitation due to the lack of Escherichia coli samples from Kenya and possible bias in selection of the patients for evaluation. Azithromycin and rifaximin should be considered as promising new agents. The widespread in vitro resistance of the traditional antimicrobial agents reported since the 1980s and the new finding of resistance to fluoroquinolones in Southeast Asia are the main reasons for monitoring carefully the antimicrobial susceptibility patterns worldwide and for developing and evaluating new antimicrobial agents for the treatment of TD.


2000 ◽  
Vol 44 (8) ◽  
pp. 2133-2142 ◽  
Author(s):  
Dong-Hyeon Kwon ◽  
Fouad A. K. El-Zaatari ◽  
Mototsugu Kato ◽  
Michael S. Osato ◽  
Rita Reddy ◽  
...  

ABSTRACT Metronidazole (Mtz) is a critical ingredient of modern multidrug therapies for Helicobacter pylori infection. Mtz resistance reduces the effectiveness of these combinations. Although null mutations in a rdxA gene that encodes oxygen-insensitive NAD(P)H nitroreductase was reported in Mtz-resistant H. pylori, an intact rdxA gene has also been reported in Mtz-resistant H. pylori, suggesting that additional Mtz resistance mechanisms exist in H. pylori. We explored the nature of Mtz resistance among 544 clinical H. pyloriisolates to clarify the role of rdxA inactivation in Mtz resistance and to identify another gene(s) responsible for Mtz resistance in H. pylori. Mtz resistance was present in 33% (181 of 544) of the clinical isolates. There was marked heterogeneity of resistance, with Mtz MICs ranging from 8 to ≥256 μg/ml.rdxA inactivation resulted in Mtz MICs of up to 32 μg/ml for 6 Mtz-sensitive H. pylori strains and 128 μg/ml for one Mtz-sensitive strain. Single or dual (with rdxA) inactivation of genes that encode ferredoxin-like protein (designatedfdxB) and NAD(P)H flavin oxidoreductase (frxA) also increased the MICs of Mtz for sensitive and resistant strains with low to moderate levels of Mtz resistance. fdxB inactivation resulted in a lower level of resistance than that from rdxAinactivation, whereas frxA inactivation resulted in MICs similar to those seen with rdxA inactivation. Further evidence for involvement of the frxA gene in Mtz resistance included the finding of a naturally inactivated frxA but an intact rdxA in an Mtz-resistant strain, complementation of Mtz sensitivity from an Mtz-sensitive strain to an Mtz-resistant strain or vice versa by use of naturally inactivated or functionalfrxA genes, respectively, and transformation of an Mtz-resistant Escherichia coli strain to an Mtz sensitive strain by a naturally functional frxA gene but not an inactivated frxA gene. These results are consistent with the hypothesis that null mutations in fdxB,frxA, or rdxA may be involved in Mtz resistance.


Author(s):  
SYAHRIDA DIAN ARDHANY

Objective: The aim of the present study was to investigate phytochemical screenings and the in vitro effect antibacterial of BD (Eleutherine Sp.) and TU (Ampelocissus Sp.) against Propionibacterium acnes.Methods: The antibacterial activity was investigated against Propionibacterium acnes by well diffusion method.Results: Preliminary phytochemical screenings of BD ethanolic extract were found positive alkaloid, saponin, tannins, and steroid while TUpositive flavonoid, saponin, tannins, steroid, and triterpenoid. Antibacterial activity against Propionibacterium acnes of ethanolic extract BD with concentration 25 mg/ml and 50 mg/ml showed the zone of inhibition 3.23 mm and 7.8 mm with category weak activity while ethanolic extract TU with same concentration showed zone of inhibition 10 mm (weak activity) and 16.3 mm (moderate activity) which mean ethanolic extract TU have better antibacterial activity. A combination ethanolic extract of both with variant ratio showed a zone of inhibition 6.7 mm (1:1), 3.9 mm (1:2), and 3.63 mm (2:1).Conclusion: In this present study showed the highest potential antibacterial activity against propionibacterium acnes is an ethanolic extract of TU and The best ratio combination is 1:1. Furthermore, this study needs more research with variant concentration so that may be possible to be used as natural anti-acne formulations.


2017 ◽  
Vol 2 ◽  
pp. 16 ◽  
Author(s):  
Esther van Kleef ◽  
Nantasit Luangasanatip ◽  
Marc J Bonten ◽  
Ben S. Cooper

Background: Large reductions in the incidence of antibiotic-resistant strains of Staphylococcus aureus and Clostridium difficile have been observed in response to multifaceted hospital-based interventions. Reductions in antibiotic-sensitive strains have been smaller or non-existent. It has been argued that since infection control measures, such as hand hygiene, should affect resistant and sensitive strains equally, observed changes must have largely resulted from other factors, including changes in antibiotic use. We used a mathematical model to test the validity of this reasoning. Methods: We developed a mechanistic model of resistant and sensitive strains in a hospital and its catchment area. We assumed the resistant strain had a competitive advantage in the hospital and the sensitive strain an advantage in the community. We simulated a hospital hand hygiene intervention that directly affected resistant and sensitive strains equally. The annual incidence rate ratio (IRR) associated with the intervention was calculated for hospital- and community-acquired infections of both strains. Results: For the resistant strain, there were large reductions in hospital-acquired infections (0.1 ≤ IRR ≤ 0.6) and smaller reductions in community-acquired infections (0.2 ≤ IRR ≤  0.9). These reductions increased in line with increasing importance of nosocomial transmission of the strain. For the sensitive strain, reductions in hospital acquisitions were much smaller (0.6 ≤ IRR ≤ 0.9), while communityacquisitions could increase or decrease (0.9 ≤ IRR ≤ 1.2). The greater the importance of the community environment for the transmission of the sensitive strain, the smaller the reductions. Conclusions: Counter-intuitively, infection control interventions, including hand hygiene, can have strikingly discordant effects on resistant and sensitive strains even though they target them equally, following differences in their adaptation to hospital and community-based transmission. Observed lack of effectiveness of control measures for sensitive strains does not provide evidence that infection control interventions have been ineffective in reducing resistant strains.


Sign in / Sign up

Export Citation Format

Share Document