Synthesis and biological evaluation of 4-aminoantipyrine analogues

2020 ◽  
Vol 16 ◽  
Author(s):  
Houwei Ren ◽  
Premnath Dhanaraj ◽  
Israel V M V Enoch ◽  
Mosae Selvakumar Paulraj ◽  
Indiraleka M

Objectives: The aim of the present study is to carry out a simple synthesis of aminoantipyrine analogues and exploration of their antibacterial, cytotoxic, and anticonvulsant potential. Methods: The compounds were characterized employing multi-spectroscopic methods. The in vitro pharmacological response of a series of bacteria were screened employing serial dilution method. The derivatives were screened against maximal electro-shock for their anticonvulsant activity. Molecular docking was carried out to optimize the interaction of the compounds with HPV16-E7 receptors. Further, the in vitro cytotoxicity was tested against human cervical cancer (SiHa) cell lines. Results: The compounds show protection against maximal electroshock, esp. 3-nirto- and 4-methyl-3-nitrobenzamido derivatives. In addition, they reveal appreciable DNA cleavage activities and interactions with HPV16-E7 protein receptors, esp. 3,5-dinitro- and 4-methyl-3-nitrobenzamido derivatives. Furthermore, they show potent activity against cervical cancer cells (LD50 value up to 1200 in the case of 4-methyl-3-nitrobenzamido derivative and an inhibition of a maximum of 97% of cells). Conclusions: The simply synthesized aminoantipyrine derivatives show a variety of biological activities like antibacterial and anticancer effects. In addition, this is the first study demonstrating that 4-aminoantipyrine derivatives shows an anticonvulsant activity.

2020 ◽  
Author(s):  
Mukesh Kumari ◽  
Sumit Tahlan ◽  
Balasubramanian Narasimhan ◽  
Kalavathy Ramasamy ◽  
Siong Meng Lim ◽  
...  

Abstract Background: Triazole is an important heterocyclic moiety that occupied a unique position in heterocyclic chemistry, due to its large number of biological activities. It exists in two isomeric forms i.e. 1,2,4-triazole and 1,2,3-triazole and used as core molecule for the design and synthesis of many medicinal compounds. 1,2,4-Triazole possess broad spectrum of therapeutically interesting drug candidates such as analgesic, antiseptic, antimicrobial, antioxidant, antiurease , anti-inflammatory, diuretics, anticancer, anticonvulsant, antidiabetic, antimigrain agents.Methods: The structure of all synthesized compounds were characterized by physicochemical properties and spectral means (IR and NMR). The synthesized compounds were evaluated for their in vitro antimicrobial activity against Gram-positive (B. subtilis), Gram-negative (P. aeruginosa and E. coli) bacterial and fungal (C. albicans and A. niger) strains by tube dilution method using ciprofloxacin, amoxicillin and fluconazole as standards. In-vitro antioxidant and anti-urease screening was done by DPPH assay and indophenol method, respectively. The in-vitro anticancer evaluation was carried out against MCF-7 and HCT116 cancer cell lines using 5-FU and cisplatin as standards.Results, discussion and conclusion: The biological screening results reveal that the compounds T5 (MICBS, EC = 24.7µM, MICPA, CA = 12.3 µM) and T17 (MICAN = 27.1µM) exhibited potent antimicrobial activity as comparable to standards ciprofloxacin, amoxicillin (MICCipro = 18.1µM, MICAmo = 17.1µM) and fluconazole (MICFlu = 20.4µM), respectively. The antioxidant evaluation showed that compounds T2 (IC50 = 34.83 µg/ml) and T3 (IC50 = 34.38 µg/ml) showed significant antioxidant activity and comparable to ascorbic acid (IC50 = 35.44 µg/ml). Compounds T3 (IC50 = 54.01µg/ml) was the most potent urease inhibitor amongst the synthesized compounds and compared to standard thiourea (IC50 = 54.25 µg/ml). The most potent anticancer activity showed by compounds T2 (IC50 = 3.84 μM) and T7 (IC50 = 3.25 μM) against HCT 116 cell lines as compared to standard 5-FU (IC50 = 25.36 μM).


Author(s):  
Sampada Jangam ◽  
Meenakshi Deodhar ◽  
Sagar Wankhede

Background: Phenytoin (5,5-diphenyl hydantoin) has poor water solubility which results in incomplete oral availability. Other problems associated with the oral and intramuscular administration of phenytoin are gastric irritation and inflammation at the site of injection. Objective: The purpose of this study was to synthesize mutual amide prodrugs of phenytoin by using amino acids like glycine, L-tryptophan, L-lysine and taurine. Methods: These prodrugs were synthesized and characterized by Fourier Transform Infrared (FTIR), Proton nuclear magnetic resonance (1 H NMR) and Mass Spectra. Physical and spectral characterization was performed by determination of solubility, maximum wavelength, partition coefficient (log P), ionization constant (pKa), specific (α) and molar rotation (µ), refractive index (n), specific refraction (RS) and molar refraction (RM). Results: The results obtained from solubility and log P values determination indicated that phenytoin prodrugs can be administered by oral as well as a parenteral route by minimizing the limitations associated with phenytoin. Anticonvulsant activity of prodrugs (4a-4d) was performed by using maximal electroshock (MES) and strychnine induced seizure test on albino mice of either sex weighing 25-30 g in which 4b and 4d were found to have significant anticonvulsant activity for MES and strychnine induced seizure test. In vitro enzymatic hydrolysis study of 4b and 4d was performed on liver, intestinal mucosa and plasma sample of male Sprague Dawley rats weighing 280-300 g in which phenytoin was eluted at 10.13 to 10.68 minute at 220 nm. Conclusion: The results obtained from the present work showed that amino acid based mutual prodrug strategy can be a promising method to increase the solubility and anticonvulsant activity of phenytoin for the development of anticonvulsant agents.


2020 ◽  
Author(s):  
Mukesh Kumari ◽  
Sumit Tahlan ◽  
Balasubramanian Narasimhan ◽  
Kalavathy Ramasamy ◽  
Siong Meng Lim ◽  
...  

Abstract Background: Triazole is an important heterocyclic moiety that occupies a unique position in heterocyclic chemistry, due to its large number of biological activities. It exists in two isomeric forms i.e. 1,2,4-triazole and 1,2,3-triazole and is used as core molecule for the design and synthesis of many medicinal compounds. 1,2,4-Triazole possess broad spectrum of therapeutically interesting drug candidates such as analgesic, antiseptic, antimicrobial, antioxidant, anti-urease, anti-inflammatory, diuretics, anticancer, anticonvulsant, antidiabetic and antimigraine agents.Methods: The structures of all synthesized compounds were characterized by physicochemical properties and spectral means (IR and NMR). The synthesized compounds were evaluated for their in vitro antimicrobial activity against Gram-positive (B. subtilis), Gram-negative (P. aeruginosa and E. coli) bacterial and fungal (C. albicans and A. niger) strains by tube dilution method using ciprofloxacin, amoxicillin and fluconazole as standards. In-vitro antioxidant and anti-urease screening was done by DPPH assay and indophenol method, respectively. The in-vitro anticancer evaluation was carried out against MCF-7 and HCT116 cancer cell lines using 5-FU and cisplatin as standards.Results, discussion and conclusion: The biological screening results reveal that the compoundsT5 (MICBS,EC= 24.7µM, MICPA, CA = 12.3 µM) and T17 (MICAN = 27.1µM) exhibited potent antimicrobial activity as comparable to standards ciprofloxacin, amoxicillin (MICCipro= 18.1µM, MICAmo = 17.1µM) and fluconazole (MICFlu = 20.4µM), respectively. The antioxidant evaluation showed that compounds T2 (IC50 = 34.83 µg/ml) and T3 (IC50 = 34.38 µg/ml) showed significant antioxidant activity and comparable to ascorbic acid (IC50 = 35.44 µg/ml). Compounds T3 (IC50 = 54.01µg/ml) was the most potent urease inhibitor amongst the synthesized compounds and compared to standard thiourea (IC50 = 54.25 µg/ml).The most potent anticancer activity was shown by compounds T2 (IC50 = 3.84μM) and T7 (IC50 = 3.25μM) against HCT116 cell lines as compared to standard 5-FU (IC50 = 25.36μM).


BMC Chemistry ◽  
2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Mukesh Kumari ◽  
Sumit Tahlan ◽  
Balasubramanian Narasimhan ◽  
Kalavathy Ramasamy ◽  
Siong Meng Lim ◽  
...  

Abstract Background Triazole is an important heterocyclic moiety that occupies a unique position in heterocyclic chemistry, due to its large number of biological activities. It exists in two isomeric forms i.e. 1,2,4-triazole and 1,2,3-triazole and is used as core molecule for the design and synthesis of many medicinal compounds. 1,2,4-Triazole possess broad spectrum of therapeutically interesting drug candidates such as analgesic, antiseptic, antimicrobial, antioxidant, anti-urease, anti-inflammatory, diuretics, anticancer, anticonvulsant, antidiabetic and antimigraine agents. Methods The structures of all synthesized compounds were characterized by physicochemical properties and spectral means (IR and NMR). The synthesized compounds were evaluated for their in vitro antimicrobial activity against Gram-positive (B. subtilis), Gram-negative (P. aeruginosa and E. coli) bacterial and fungal (C. albicans and A. niger) strains by tube dilution method using ciprofloxacin, amoxicillin and fluconazole as standards. In-vitro antioxidant and anti-urease screening was done by DPPH assay and indophenol method, respectively. The in-vitro anticancer evaluation was carried out against MCF-7 and HCT116 cancer cell lines using 5-FU as standards. Results, discussion and conclusion The biological screening results reveal that the compounds T5 (MICBS, EC = 24.7 µM, MICPA, CA = 12.3 µM) and T17 (MICAN = 27.1 µM) exhibited potent antimicrobial activity as comparable to standards ciprofloxacin, amoxicillin (MICCipro = 18.1 µM, MICAmo = 17.1 µM) and fluconazole (MICFlu = 20.4 µM), respectively. The antioxidant evaluation showed that compounds T2 (IC50 = 34.83 µg/ml) and T3 (IC50 = 34.38 µg/ml) showed significant antioxidant activity and comparable to ascorbic acid (IC50 = 35.44 µg/ml). Compounds T3 (IC50 = 54.01 µg/ml) was the most potent urease inhibitor amongst the synthesized compounds and compared to standard thiourea (IC50 = 54.25 µg/ml). The most potent anticancer activity was shown by compounds T2 (IC50 = 3.84 μM) and T7 (IC50 = 3.25 μM) against HCT116 cell lines as compared to standard 5-FU (IC50 = 25.36 μM).


Author(s):  
Sharad Sankhe ◽  
Nitesh Chindarkar

Aims: To synthesize new nitroisoindoline-1,3-diones analogues and evaluate their preliminary biological activities Methodology: New isoindoline-1,3-diones analogues were synthesized by coupling phthalic anhydride derivatives with appropriate aromatic amines. Newly synthesized heterocyclic compounds were evaluated for their in vitro antibacterial activity against gram-positive bacterial strains and gram-negative bacterial strains. They were also tested for their in vitro antifungal activity against fungi strains. Determination of the preliminary antibacterial and antifungal activity were investigated using agar-dilution method. The structures of newly synthesized analogues were elucidated by 1H and 13C-NMR techniques. Results: Bioassay indicated that some of the newly synthesized isoindoline-1,3-dione analogues shows moderate biological activities. Conclusion: Newly synthesized analogues can be used as antibacterial or antifungal agents on modifications.


2020 ◽  
Author(s):  
Mukesh Kumari ◽  
Sumit Tahlan ◽  
Balasubramanian Narasimhan ◽  
Kalavathy Ramasamy ◽  
Siong Meng Lim ◽  
...  

Abstract Background: Triazole is an important heterocyclic moiety that occupies a unique position in heterocyclic chemistry, due to its large number of biological activities. It exists in two isomeric forms i.e. 1,2,4-triazole and 1,2,3-triazole and used as core molecule for the design and synthesis of many medicinal compounds. 1,2,4-Triazole possess broad spectrum of therapeutically interesting drug candidates such as analgesic, antiseptic, antimicrobial, antioxidant, anti urease , anti-inflammatory, diuretics, anticancer, anticonvulsant, antidiabetic, antimigrain agents. Methods: The structure of all synthesized compounds were characterized by physicochemical properties and spectral means (IR and NMR). The synthesized compounds were evaluated for their in vitro antimicrobial activity against Gram-positive ( B. subtilis ), Gram-negative ( P. aeruginosa and E. coli ) bacterial and fungal ( C. albicans and A. niger ) strains by tube dilution method using ciprofloxacin, amoxicillin and fluconazole as standards. In-vitro antioxidant and anti- urease screening was done by DPPH assay and indophenol method, respectively. The in-vitro anticancer evaluation was carried out against MCF-7 and HCT116 cancer cell lines using 5-FU and cisplatin as standards. Results, discussion and conclusion: The biological screening results reveal that the compounds T 5 (MIC BS, EC = 24.7µM, MIC PA, CA = 12.3 µM) and T 17 (MIC AN = 27.1µM) exhibited potent antimicrobial activity as comparable to standards ciprofloxacin, amoxicillin (MIC Cipro = 18.1µM, MIC Amo = 17.1µM) and fluconazole (MIC Flu = 20.4µM), respectively. The antioxidant evaluation showed that compounds T 2 (IC 50 = 34.83 µg/ml) and T 3 (IC 50 = 34.38 µg/ml) showed significant antioxidant activity and comparable to ascorbic acid (IC 50 = 35.44 µg/ml). Compounds T 3 (IC 50 = 54.01µg/ml) was the most potent urease inhibitor amongst the synthesized compounds and compared to standard thiourea (IC 50 = 54.25 µg/ml). The most potent anticancer activity showed by compounds T 2 (IC 50 = 3.84 μM) and T 7 (IC 50 = 3.25 μM) against HCT 116 cell lines as compared to standard 5-FU (IC 50 = 25.36 μM).


2020 ◽  
Vol 17 (4) ◽  
pp. 512-517
Author(s):  
Ognyan Ivanov Petrov ◽  
Yordanka Borisova Ivanova ◽  
Mariana Stefanova Gerova ◽  
Georgi Tsvetanov Momekov

Background: Chemotherapy is one of the mainstays of cancer treatment, despite the serious side effects of the clinically available anticancer drugs. In recent years increasing attention has been directed towards novel agents with improved efficacy and selectivity. Compounds with chalcone backbone have been reported to possess various biological activities such as anticancer, antimicrobial, anti-inflammatory, analgesic, antioxidant, etc. It was reported that aminomethylation of hydroxy chalcones to the corresponding Mannich bases increased their cytotoxicity. In this context, our interest has been focused on the design and synthesis of the so-called multi-target molecules, containing two or more pharmacophore fragments. Methods: A series of Mannich bases were synthesized by the reaction between 6-[3-(3,4,5- trimethoxyphenyl)-2-propenoyl]-2(3Н)-benzoxazolone, formaldehyde, and a secondary amine. The structures of the compounds were confirmed by elemental analysis, IR and NMR spectra. The new Mannich bases were evaluated for their in vitro cytotoxicity against a panel of human tumor cell lines, including BV-173, SKW-3, K-562, HL-60, HD-MY-Z and MDA-MB-231. The effects of selected compounds on the cellular levels of glutathione (GSH) were determined. Results: The new compounds 4a-e exhibited concentration-dependent cytotoxic effects at micromolar concentrations in MTT-dye reduction assay against a panel of human tumor cell lines, similar to those of starting chalcone 3. The tested agents led to concentration - dependent depletion of cellular GSH levels, whereby the effects of the chalcone prototype 3 and its Mannich base-derivatives were comparable. Conclusion: The highest chemosensitivity to the tested compounds was observed in BV- 173followed by SKW-3 and HL-60 cell lines.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 620
Author(s):  
Anne Ardaillou ◽  
Jérôme Alsarraf ◽  
Jean Legault ◽  
François Simard ◽  
André Pichette

Several families of naturally occurring C-alkylated dihydrochalcones display a broad range of biological activities, including antimicrobial and cytotoxic properties, depending on their alkylation sidechain. The catalytic Friedel–Crafts alkylation of the readily available aglycon moiety of neohesperidin dihydrochalcone was performed using cinnamyl, benzyl, and isoprenyl alcohols. This procedure provided a straightforward access to a series of derivatives that were structurally related to natural balsacones, uvaretin, and erioschalcones, respectively. The antibacterial and cytotoxic potential of these novel analogs was evaluated in vitro and highlighted some relations between the structure and the pharmacological properties of alkylated dihydrochalcones.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Sospeter N. Njeru ◽  
Jackson M. Muema

Abstract Objectives We and others have shown that Aspilia pluriseta is associated with various biological activities. However, there is a lack of information on its cytotoxicity. This has created an information gap about the safety of A. pluriseta extracts. As an extension to our recent publication on the antimicrobial activity and the phytochemical characterization of A. pluriseta root extracts, here we report on cytotoxicity of tested solvent fractions. We evaluated the potential cytotoxicity of these root extract fractions on Vero cell lines by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results We show that all solvent extract fractions (except methanolic solvent fractions) had cytotoxic concentration values that killed 50% of the Vero cells (CC50) greater than 20 µg/mL and selectivity index (SI) greater than 1.0. Taken together, we demonstrate that, A. pluriseta extract fractions’ earlier reported bioactivities are within the acceptable cytotoxicity and selective index limits. This finding scientifically validates the potential use of A. pluriseta in the discovery of safe therapeutics agents.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Vishal Banewar

Pyrazolines are well known and important nitrogen containing 5-membered heterocyclic compounds. In the present investigation, a series of various heteroaryl chalcones and pyrazolines were synthesized by condensing formylquinolines with diverse ketones. The newly synthesized 2-pyrazolines were characterized on the basis of elemental analysis and spectroscopic data. All of the newly synthesized target compounds were selected by the NCI forin vitrobiological evaluation. These active compounds exhibited broad spectrum of various biological activities. Most of the compounds showed potent activity.


Sign in / Sign up

Export Citation Format

Share Document