scholarly journals In vitro cytotoxicity of Aspilia pluriseta Schweinf. extract fractions

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Sospeter N. Njeru ◽  
Jackson M. Muema

Abstract Objectives We and others have shown that Aspilia pluriseta is associated with various biological activities. However, there is a lack of information on its cytotoxicity. This has created an information gap about the safety of A. pluriseta extracts. As an extension to our recent publication on the antimicrobial activity and the phytochemical characterization of A. pluriseta root extracts, here we report on cytotoxicity of tested solvent fractions. We evaluated the potential cytotoxicity of these root extract fractions on Vero cell lines by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results We show that all solvent extract fractions (except methanolic solvent fractions) had cytotoxic concentration values that killed 50% of the Vero cells (CC50) greater than 20 µg/mL and selectivity index (SI) greater than 1.0. Taken together, we demonstrate that, A. pluriseta extract fractions’ earlier reported bioactivities are within the acceptable cytotoxicity and selective index limits. This finding scientifically validates the potential use of A. pluriseta in the discovery of safe therapeutics agents.

2020 ◽  
Author(s):  
Sospeter Ngoci Njeru ◽  
Jackson Mbithi Muema

Abstract Objectives: We and others have shown that Aspilia pluriseta is associated with various biological activities. However, there is a lack of information on A. pluriseta cytotoxicity. This has created an information gap about the safety of A. pluriseta extracts. As an extension to our recent publication on the antimicrobial activity and the phytochemicals characterization of A. pluriseta root extracts, here we report the missing data on cytotoxicity of tested extracts. We evaluated the potential cytotoxicity of the root extracts on Vero cell lines by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results: We show that all solvent extracts (except methanolic solvent fractions) had cytotoxic concentration values that killed 50% of the Vero cells (CC50) greater than 20 µg/mL and selectivity index (SI) of greater than 1.0. Taken together, we demonstrate that, A. pluriseta extract fractions’ earlier reported bioactivity are within the acceptable cytotoxicity and selective index limits. This scientifically validates the potential use of A. pluriseta in the discovery of safe therapeutics agents.


2014 ◽  
Vol 893 ◽  
pp. 56-59 ◽  
Author(s):  
Eko Pujiyanto ◽  
Pringgo Widyo Laksono ◽  
Joko Triyono

This study prepared hydroxyapatite powder that synthesized from natural gypsum rock and find out physicalchemical and cytotoxicity properties. The synthesis realized by reacting natural gypsum powder with 1M of (NH4)2HPO4 solutions using a microwave. Characterizations of natural gypsum powder and hydroxyapatite powder were conducted by XRD, XRF and SEM. In vitro cytotoxicity testings of hydroxyapatite powder were conducted by MTT method using vero cells. XRD patterns of gypsum powder closed to JCPDF 33-0311 (gypsum standard). Characteristics of gypsum powder i.e. contained 41.72% CaO, level of purity 91,6 % and crystal size 7,147 nm. Charateristic of hydroxyapatite powder that synthesized from natural gypsum powder i.e. contained 46.91% CaO and 40.20% P2O5, XRD patern closed to JCPDF 09-432 (hydroxyapatite standard), level of purity 99 % and crystal size 1.243 nm. There were not significantly difference in cytotoxicity properties of hydroxyapatite powder that synthesized from natural gypsum rock and commercial hydroxyapatite powder (p= 0.086). These results indicated hydroxyapatite powder that synthesized from natural gypsum rock possible to be used as bone substitutes.


Author(s):  
Jhons Fatriyadi Suwandi ◽  
Mahardika Agus Wijayanti ◽  
Mustofa .

Objective: The aim of this study was to assess the antiplasmodial and cytotoxic activities and to evaluate the selectivity indices of acetone, ethanol and aqueous extracts of Peronema canescens leaves.Methods: Antiplasmodial activity was measured in vitro against Plasmodium falciparum strains D10 and FCR3 by 72 h incubation at 37 °C in a candle jar. Parasitaemia was calculated by counting the parasite numbers in thin smears. In vitro cytotoxicity was assayed in Vero cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and reading the absorbency at 595 nm with an ELISA reader. The assessed parameters included: 50% inhibitory concentration (IC50) of antiplasmodial activity, IC50 of cytotoxic activity and the selectivity index of the Peronema canescens leaf extract.Results: The IC50 values for the acetone, ethanol and aqueous extracts were 26.33±1.65, 37.96±8.17 and 12.26±1.05 μg/ml, respectively, against the Plasmodium falciparum D10 strain and 51.14±8.65, 70.22±14.13 and 34.85±6.04 μg/ml, respectively, against the FCR3 strain. For Vero cells, the IC50 values for the acetone, ethanol and aqueous extracts were 23.37±5.63, 629.46±24.85 and 634.00±144.82 μg/ml, respectively. The selectivity indices of these extracts were 0.89, 16.46 and 51.70, respectively, for the D10 strain and 0.46, 8.90 and 18.00, respectively, for the FCR3 strain.Conclusion: The aqueous extract of Peronema canescens leaves had the highest in vitro antiplasmodial activity and the best selectivity index.


2020 ◽  
Vol 17 (4) ◽  
pp. 512-517
Author(s):  
Ognyan Ivanov Petrov ◽  
Yordanka Borisova Ivanova ◽  
Mariana Stefanova Gerova ◽  
Georgi Tsvetanov Momekov

Background: Chemotherapy is one of the mainstays of cancer treatment, despite the serious side effects of the clinically available anticancer drugs. In recent years increasing attention has been directed towards novel agents with improved efficacy and selectivity. Compounds with chalcone backbone have been reported to possess various biological activities such as anticancer, antimicrobial, anti-inflammatory, analgesic, antioxidant, etc. It was reported that aminomethylation of hydroxy chalcones to the corresponding Mannich bases increased their cytotoxicity. In this context, our interest has been focused on the design and synthesis of the so-called multi-target molecules, containing two or more pharmacophore fragments. Methods: A series of Mannich bases were synthesized by the reaction between 6-[3-(3,4,5- trimethoxyphenyl)-2-propenoyl]-2(3Н)-benzoxazolone, formaldehyde, and a secondary amine. The structures of the compounds were confirmed by elemental analysis, IR and NMR spectra. The new Mannich bases were evaluated for their in vitro cytotoxicity against a panel of human tumor cell lines, including BV-173, SKW-3, K-562, HL-60, HD-MY-Z and MDA-MB-231. The effects of selected compounds on the cellular levels of glutathione (GSH) were determined. Results: The new compounds 4a-e exhibited concentration-dependent cytotoxic effects at micromolar concentrations in MTT-dye reduction assay against a panel of human tumor cell lines, similar to those of starting chalcone 3. The tested agents led to concentration - dependent depletion of cellular GSH levels, whereby the effects of the chalcone prototype 3 and its Mannich base-derivatives were comparable. Conclusion: The highest chemosensitivity to the tested compounds was observed in BV- 173followed by SKW-3 and HL-60 cell lines.


RSC Advances ◽  
2016 ◽  
Vol 6 (45) ◽  
pp. 39469-39479 ◽  
Author(s):  
R. Pazik ◽  
A. Zięcina ◽  
B. Poźniak ◽  
M. Malecka ◽  
L. Marciniak ◽  
...  

Blue emitting, up-converting NP's of SrTiO3:Tm3+/Yb3+ synthesized using the citric route are biocompatible towards J774.E whereas the cytotoxic effect to U2OS cells is not particle size dependent but most probably is related to Sr2+ ion release.


2011 ◽  
Vol 83 (11) ◽  
pp. 2027-2040 ◽  
Author(s):  
Neralakere Ramanna Ravikumara ◽  
Basavaraj Madhusudhan

In this study, tamoxifen citrate-loaded chitosan nanoparticles (tamoxcL-ChtNPs) and tamoxifen citrate-free chitosan nanoparticles (tamoxcF-ChtNPs) were prepared by an ionic gelation (IG) method. The physicochemical properties of the nanoparticles were analyzed for particle size, zeta (ζ) potential, and other characteristics using photon correlation spectroscopy (PCS), zeta phase analysis light scattering (PALS), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and differential scanning calorimetry (DSC). The variation in particle size was assessed by changing the concentration of chitosan, pentasodium tripolyphosphate (TPP), and the pH of the solution. The optimized tamoxcL-ChtNPs showed mean diameter of 187 nm, polydispersity of 0.125, and ζ-potential of +19.1 mV. The encapsulation efficiency (EE) of tamoxifen citrate (tamoxc) increased at higher concentrations, and release of tamoxc from the chitosan matrix displayed controlled biphasic behavior. Those tamoxcL-ChtNPs tested for chemosensitivity showed dose- and time-dependent antiproliferative activity of tamoxc. Further, tamoxcL-ChtNPs were found to be hemocompatible with human red blood cells (RBCs) and safe by in vitro cytotoxicity tests, suggesting that they offer promise as drug delivery systems in therapy.


BMC Chemistry ◽  
2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Hajar Karimi Askarani ◽  
Aida Iraji ◽  
Arezoo Rastegari ◽  
Syed Nasir Abbas Bukhari ◽  
Omidreza Firuzi ◽  
...  

Abstract To discover multifunctional agents for the treatment of Alzheimer's disease (AD), a new series of 1,2,3-triazole-chromenone derivatives were designed and synthesized based on the multi target-directed ligands approach. The in vitro biological activities included acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition as well as anti-Aβ aggregation, neuroprotective effects, and metal-chelating properties. The results indicated a highly selective BuChE inhibitory activity with an IC50 value of 21.71 μM for compound 10h as the most potent compound. Besides, compound 10h could inhibit self-induced Aβ1–42 aggregation and AChE-induced Aβ aggregation with 32.6% and 29.4% inhibition values, respectively. The Lineweaver–Burk plot and molecular modeling study showed that compound 10h targeted both the catalytic active site (CAS) and peripheral anionic site (PAS) of BuChE. It should be noted that compound 10h was able to chelate biometals. Thus, the designed scaffold could be considered as multifunctional agents in AD drug discovery developments.


Sign in / Sign up

Export Citation Format

Share Document