Effect of Substitution Pro32Thr on the Interaction between Dimer Subunits of Human Phosphatase ITPA

2019 ◽  
Vol 15 (1) ◽  
pp. 46-54
Author(s):  
Ermuhammad B. Dushanov ◽  
Natalia A. Koltovaya

Background: Cells have specific enzymes (nucleoside triphosphate pyrophosphohydrolase) that hydrolyze non-canonic nucleoside triphosphates into nucleoside monophosphophates and pyrophosphate, thus removing them from the metabolic processes. This class of enzymes includes inosine triphosphate pyrophosphatase (ITPA) which has specificity to ITP, dITP, XTP and dXTP. Objective: The mutation (94C→A) rather often occurs in humans and can affect the sensitivity of patients to medicines. This mutation leads to a Pro32Thr substitution in the human ITPA protein. The mechanism for the inactivating effect of the mutation is unknown yet. Methods: Molecular modeling of the polymorphic form of inosine triphosphate pyrophosphohydrolase Р32Т-hITPA showing the greatest decrease in the enzyme activity is performed. The analysis is given for four dimer variants: wild-type (P32/P32) and mutant (T32/T32) homodimers and two mutant heterodimers (Р32/Т32 and Т32/Р32). Results: The analysis does not show the motion of the loop between α2 and β2 where mutation localized. Thus, the hypothesis of the flipped-out hydrophobic residue and subsequent of protein degradation have not been confirmed. Dimer displacements were much higher than subunit displacements. The analysis of hydrogen bonds between subunits shows that there are the more stable hydrogen bonds in the wild-type homodimer and fewer in the mutant homodimer, while heterodimers have intermediate stability. Conclusion: The results confirm the assumption of possible weakening of bonds between the mutant subunits

1995 ◽  
Vol 312 (1) ◽  
pp. 273-280 ◽  
Author(s):  
M Haraguchi ◽  
S Yamashiro ◽  
K Furukawa ◽  
K Takamiya ◽  
H Shiku ◽  
...  

The amino acid sequence deduced from the cloned human cDNA of beta-1,4-N-acetylgalactosaminyltransferase (GalNAc-T; EC 2.4.1.92) gene predicted three potential sites for N-linked glycosylation. Although many glycosyltransferases isolated contain from 2 to 6 N-glycosylation sites, their significance has not been adequately demonstrated. To clarify the roles of N-glycosylation in GalNAc-T function, we generated a series of mutant cDNAs, in which some or all of the glycosylation recognition sites were eliminated by polymerase chain reaction (PCR)-mediated site-directed mutagenesis. Using transcription/translation in vitro, we confirmed that all potential N-glycosylation sites could be used. Although cell lines transfected with mutant cDNAs showed equivalent levels of GalNAc beta 1-->4(NeuAc alpha 2-->3)Gal beta 1-->4Glc-Cer (GM2) to that of the wild-type, the extracts from mutant cDNA transfectants demonstrated lower enzyme activity than in the wild-type. The decrease in enzyme activity was more evident as the number of deglycosylated sites increased, with about 90% decrease in a totally deglycosylated mutant. The enzyme kinetics analysis revealed no significant change of Km among wild-type and mutant cDNA products. The intracellular localization of GalNAc-T expressed in transfectants with wild-type or mutant cDNAs also showed a similar perinuclear pattern (Golgi pattern). These results suggest that N-linked carbohydrates on GalNAc-T are required for regulating the stability of the enzyme structure.


2020 ◽  
Vol 3 (1) ◽  
pp. 32-42 ◽  
Author(s):  
Kyungjin Lee ◽  
Ok Jin Hwang ◽  
Kyoungwhan Back

A reverse melatonin biosynthetic pathway was recently discovered in plants, by which N-acetylserotonin (NAS) is converted into serotonin by N-acetylserotonin deacetylase (ASDAC) rather than into melatonin by N-acetylserotonin O-methyltransferase (ASMT). In this study, we generated transgenic rice plants in which ASDAC was either suppressed or overexpressed to determine whether ASDAC is functionally involved in melatonin biosynthesis. ASDAC-suppressed rice showed increased levels of NAS, 5-methoxytryptamine (5-MT), and melatonin, whereas ASDAC-overexpressed rice exhibited less melatonin synthesis than observed in the wild type. This finding is strong evidence of the role of ASDAC in melatonin biosynthesis in rice. The increased levels of 5-MT, which is produced either by ASDAC from melatonin or by serotonin O-methyltransferase (SOMT) from serotonin in ASDAC-suppressed rice, was ascribed to enhanced SOMT enzyme activity rather than increased transcripts, such as ASMT or caffeic acid O-methyltransferase (COMT) encoding SOMT activity.     


2020 ◽  
Vol 8 (12) ◽  
pp. 1896
Author(s):  
Galia Zaide ◽  
Uri Elia ◽  
Inbar Cohen-Gihon ◽  
Ma’ayan Israeli ◽  
Shahar Rotem ◽  
...  

We previously demonstrated that the HtrA (High Temperature Requirement A) protease/chaperone active in the quality control of protein synthesis, represents an important virulence determinant of Bacillus anthracis. Virulence attenuation of htrA-disrupted Bacillus anthracis strains was attributed to susceptibility of ΔhtrA strains to stress insults, as evidenced by affected growth under various stress conditions. Here, we report a comparative RNA-seq transcriptomic study generating a database of differentially expressed genes in the B. anthracis htrA-disrupted and wild type parental strains under oxidative stress. The study demonstrates that, apart from protease and chaperone activities, HtrA exerts a regulatory role influencing expression of more than 1000 genes under stress. Functional analysis of groups or individual genes exhibiting strain-specific modulation, evidenced (i) massive downregulation in the ΔhtrA and upregulation in the WT strains of various transcriptional regulators, (ii) downregulation of translation processes in the WT strain, and (iii) downregulation of metal ion binding functions and upregulation of sporulation-associated functions in the ΔhtrA strain. These modulated functions are extensively discussed. Fifteen genes uniquely upregulated in the wild type strain were further interrogated for their modulation in response to other stress regimens. Overexpression of one of these genes, encoding for MazG (a nucleoside triphosphate pyrophosphohydrolase involved in various stress responses in other bacteria), in the ΔhtrA strain resulted in partial alleviation of the H2O2-sensitive phenotype.


1983 ◽  
Vol 60 (1) ◽  
pp. 355-365
Author(s):  
J.R. Dickinson

Centrifugal elutriation was used to prepare synchronous cultures of Schizosaccharomyces pombe. Nucleoside diphosphokinase activity was measured throughout the cell cycle. In the wild-type strain (972) nucleoside diphosphokinase activity doubled in a stepwise fashion. The midpoint of the rise in enzyme activity was at 0.65 of a cycle, 0.29 of a cycle before the next S phase. Synchronous cultures of the mutant wee 1–6 were also prepared. In this strain S phase is delayed, occurring about 0.3 cycle later than in the wild-type. In wee 1–6 the midpoint of the stepwise doubling in nucleoside diphosphokinase activity occurred at 0.084; showing that the rise in enzyme activity is also delayed. Addition of cycloheximide to an exponentially growing culture caused an immediate inhibition of protein synthesis, yet nucleoside diphosphokinase activity continued to increase exponentially for a further 300 min. This indicates that the stepwise doubling of nucleoside diphosphokinase activity during the cell cycle is not achieved by a simple control on protein synthesis. Two temperature-sensitive cdc- mutants were also used: cdc2-33, a mutant whose single genetic lesion results in the twin defects of a loss of mitotic control and a loss of commitment to the cell cycle; and cdc 10–129, which has a defect in DNA replication. In both mutants a temperature shift-up of an asynchronously growing culture from the permissive (25 degrees C) to the restrictive temperature (36.5 degrees C) results in a rapid inhibition of DNA replication. In both mutants nucleoside diphosphokinase continues to increase exponentially. Therefore, although nucleoside diphosphokinase is required for DNA replication, apparently DNA replication is not required for an increase in nucleoside diphosphokinase activity.


Author(s):  
Thecan Caesar-Ton That ◽  
Lynn Epstein

Nectria haematococca mating population I (anamorph, Fusarium solani) macroconidia attach to its host (squash) and non-host surfaces prior to germ tube emergence. The macroconidia become adhesive after a brief period of protein synthesis. Recently, Hickman et al. (1989) isolated N. haematococca adhesion-reduced mutants. Using freeze substitution, we compared the development of the macroconidial wall in the wild type in comparison to one of the mutants, LEI.Macroconidia were harvested at 1C, washed by centrifugation, resuspended in a dilute zucchini fruit extract and incubated from 0 - 5 h. During the incubation period, wild type macroconidia attached to uncoated dialysis tubing. Mutant macroconidia did not attach and were collected on poly-L-lysine coated dialysis tubing just prior to freezing. Conidia on the tubing were frozen in liquid propane at 191 - 193C, substituted in acetone with 2% OsO4 and 0.05% uranyl acetate, washed with acetone, and flat-embedded in Epon-Araldite. Using phase contrast microscopy at 1000X, cells without freeze damage were selected, remounted, sectioned and post-stained sequentially with 1% Ba(MnO4)2 2% uranyl acetate and Reynold’s lead citrate. At least 30 cells/treatment were examined.


2007 ◽  
Vol 28 (3) ◽  
pp. 897-906 ◽  
Author(s):  
Thomas J. Pohl ◽  
Jac A. Nickoloff

ABSTRACT Homologous recombination (HR) is critical for DNA double-strand break (DSB) repair and genome stabilization. In yeast, HR is catalyzed by the Rad51 strand transferase and its “mediators,” including the Rad52 single-strand DNA-annealing protein, two Rad51 paralogs (Rad55 and Rad57), and Rad54. A Rad51 homolog, Dmc1, is important for meiotic HR. In wild-type cells, most DSB repair results in gene conversion, a conservative HR outcome. Because Rad51 plays a central role in the homology search and strand invasion steps, DSBs either are not repaired or are repaired by nonconservative single-strand annealing or break-induced replication mechanisms in rad51Δ mutants. Although DSB repair by gene conversion in the absence of Rad51 has been reported for ectopic HR events (e.g., inverted repeats or between plasmids), Rad51 has been thought to be essential for DSB repair by conservative interchromosomal (allelic) gene conversion. Here, we demonstrate that DSBs stimulate gene conversion between homologous chromosomes (allelic conversion) by >30-fold in a rad51Δ mutant. We show that Rad51-independent allelic conversion and break-induced replication occur independently of Rad55, Rad57, and Dmc1 but require Rad52. Unlike DSB-induced events, spontaneous allelic conversion was detected in both rad51Δ and rad52Δ mutants, but not in a rad51Δ rad52Δ double mutant. The frequencies of crossovers associated with DSB-induced gene conversion were similar in the wild type and the rad51Δ mutant, but discontinuous conversion tracts were fivefold more frequent and tract lengths were more widely distributed in the rad51Δ mutant, indicating that heteroduplex DNA has an altered structure, or is processed differently, in the absence of Rad51.


Genetics ◽  
1996 ◽  
Vol 142 (2) ◽  
pp. 383-391 ◽  
Author(s):  
Yasumasa Tsukamoto ◽  
Jun-ichi Kato ◽  
Hideo Ikeda

Abstract To examine the mechanism of illegitimate recombination in Saccharomyces cerevisiae, we have developed a plasmid system for quantitative analysis of deletion formation. A can1 cyh2 cell carrying two negative selection markers, the CAN1 and CYH2 genes, on a YCp plasmid is sensitive to canavanine and cycloheximide, but the cell becomes resistant to both drugs when the plasmid has a deletion over the CAN1 and CYH2 genes. Structural analysis of the recombinant plasmids obtained from the resistant cells showed that the plasmids had deletions at various sites of the CAN1-CYH2 region and there were only short regions of homology (1-5 bp) at the recombination junctions. The results indicated that the deletion detected in this system were formed by illegitimate recombination. Study on the effect of several rad mutations showed that the recombination rate was reduced by 30-, 10-, 10-, and 10-fold in the rad52, rad50, mre11, and xrs2 mutants, respectively, while in the rud51, 54, 55, and 57 mutants, the rate was comparable to that in the wild-type strain. The rad52 mutation did not affect length of homology at junction sites of illegitimate recombination.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 618
Author(s):  
Yue Jin ◽  
Shihao Li ◽  
Yang Yu ◽  
Chengsong Zhang ◽  
Xiaojun Zhang ◽  
...  

A mutant of the ridgetail white prawn, which exhibited rare orange-red body color with a higher level of free astaxanthin (ASTX) concentration than that in the wild-type prawn, was obtained in our lab. In order to understand the underlying mechanism for the existence of a high level of free astaxanthin, transcriptome analysis was performed to identify the differentially expressed genes (DEGs) between the mutant and wild-type prawns. A total of 78,224 unigenes were obtained, and 1863 were identified as DEGs, in which 902 unigenes showed higher expression levels, while 961 unigenes presented lower expression levels in the mutant in comparison with the wild-type prawns. Based on Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes analysis, as well as further investigation of annotated DEGs, we found that the biological processes related to astaxanthin binding, transport, and metabolism presented significant differences between the mutant and the wild-type prawns. Some genes related to these processes, including crustacyanin, apolipoprotein D (ApoD), cathepsin, and cuticle proteins, were identified as DEGs between the two types of prawns. These data may provide important information for us to understand the molecular mechanism of the existence of a high level of free astaxanthin in the prawn.


Sign in / Sign up

Export Citation Format

Share Document