Freeze-substituted fungal cells of Nectria haematococca: A comparison of the macroconidial walls of the adhesion-competent wild type with an adhesion-reduced mutant

Author(s):  
Thecan Caesar-Ton That ◽  
Lynn Epstein

Nectria haematococca mating population I (anamorph, Fusarium solani) macroconidia attach to its host (squash) and non-host surfaces prior to germ tube emergence. The macroconidia become adhesive after a brief period of protein synthesis. Recently, Hickman et al. (1989) isolated N. haematococca adhesion-reduced mutants. Using freeze substitution, we compared the development of the macroconidial wall in the wild type in comparison to one of the mutants, LEI.Macroconidia were harvested at 1C, washed by centrifugation, resuspended in a dilute zucchini fruit extract and incubated from 0 - 5 h. During the incubation period, wild type macroconidia attached to uncoated dialysis tubing. Mutant macroconidia did not attach and were collected on poly-L-lysine coated dialysis tubing just prior to freezing. Conidia on the tubing were frozen in liquid propane at 191 - 193C, substituted in acetone with 2% OsO4 and 0.05% uranyl acetate, washed with acetone, and flat-embedded in Epon-Araldite. Using phase contrast microscopy at 1000X, cells without freeze damage were selected, remounted, sectioned and post-stained sequentially with 1% Ba(MnO4)2 2% uranyl acetate and Reynold’s lead citrate. At least 30 cells/treatment were examined.

Author(s):  
Ulrich Dierkes

Calcium is supposed to play an important role in the control of protoplasmic streaming in slime mold plasmodia. The motive force for protoplasmic streaming is generated by the interaction of actin and myosin. This contraction is supposed to be controlled by intracellular Ca-fluxes similar to the triggering system in skeleton muscle. The histochemical localisation of calcium however is problematic because of the possible diffusion artifacts especially in aquous media.To evaluate this problem calcium localisation was studied in small pieces of shock frozen (liquid propane at -189°C) plasmodial strands of Physarum polycephalum, which were further processed with 3 different methods: 1) freeze substitution in ethanol at -75°C, staining in 100% ethanol with 1% uranyl acetate, and embedding in styrene-methacrylate. For comparison the staining procedure was omitted in some preparations. 2)Freeze drying at about -95°C, followed by immersion with 100% ethanol containing 1% uranyl acetate, and embedding. 3) Freeze fracture, carbon coating and SEM investigation at temperatures below -100° C.


Author(s):  
C. W. Mims ◽  
E. A. Richardson

The advantages of freeze substitution fixation over conventional chemical fixation for preservation of ultrastructural details in fungi have been discussed by various authors. As most ascomycetes, basidiomycetes and deuteromycetes do not fix well using conventional chemical fixation protocols, freeze substitution has attracted the attention of many individuals interested in fungal ultrastructure. Thus far most workers using this technique on fungi have concentrated on thin walled somatic hyphae. However, in our laboratory we have experimented with the use of freeze substitution on a variety of fungal reproductive structures and spores with promising results.Here we present data on freeze substituted samples of sporangia of the zygomycete Umbellopsis vinacea, basidia of Exobasidium camelliae var. gracilis, developing teliospores of the smut Sporisorium sorghi, germinating teliospores of the rust Gymnosporangium clavipes, germinating conidia of the deuteromycete Cercosporidium personatum, and developing ascospores of Ascodesmis nigricans.Spores of G. clavipes and C. personatum were deposited on moist pieces of sterile dialysis membrane where they hydrated and germinated. Asci of A. nigricans developed on pieces of dialysis membrane lying on nutrient agar plates. U. vinacea was cultured on small pieces of agar-coated wire. In the plant pathogens E. camelliae var. gracilis and S. sorghi, a razor blade was used to remove smal1 pieces of infected host issue. All samples were plunged directly into liquid propane and processed for study according to Hoch.l Samples on dialysis membrane were flat embedded. Serial thin sections were cut using a diamond knife, collected on slot grids, and allowed to dry down onto Formvar coated aluminum racks. Sections were post stained with uranyl acetate and lead citrate.


2007 ◽  
Vol 28 (3) ◽  
pp. 897-906 ◽  
Author(s):  
Thomas J. Pohl ◽  
Jac A. Nickoloff

ABSTRACT Homologous recombination (HR) is critical for DNA double-strand break (DSB) repair and genome stabilization. In yeast, HR is catalyzed by the Rad51 strand transferase and its “mediators,” including the Rad52 single-strand DNA-annealing protein, two Rad51 paralogs (Rad55 and Rad57), and Rad54. A Rad51 homolog, Dmc1, is important for meiotic HR. In wild-type cells, most DSB repair results in gene conversion, a conservative HR outcome. Because Rad51 plays a central role in the homology search and strand invasion steps, DSBs either are not repaired or are repaired by nonconservative single-strand annealing or break-induced replication mechanisms in rad51Δ mutants. Although DSB repair by gene conversion in the absence of Rad51 has been reported for ectopic HR events (e.g., inverted repeats or between plasmids), Rad51 has been thought to be essential for DSB repair by conservative interchromosomal (allelic) gene conversion. Here, we demonstrate that DSBs stimulate gene conversion between homologous chromosomes (allelic conversion) by >30-fold in a rad51Δ mutant. We show that Rad51-independent allelic conversion and break-induced replication occur independently of Rad55, Rad57, and Dmc1 but require Rad52. Unlike DSB-induced events, spontaneous allelic conversion was detected in both rad51Δ and rad52Δ mutants, but not in a rad51Δ rad52Δ double mutant. The frequencies of crossovers associated with DSB-induced gene conversion were similar in the wild type and the rad51Δ mutant, but discontinuous conversion tracts were fivefold more frequent and tract lengths were more widely distributed in the rad51Δ mutant, indicating that heteroduplex DNA has an altered structure, or is processed differently, in the absence of Rad51.


Genetics ◽  
1996 ◽  
Vol 142 (2) ◽  
pp. 383-391 ◽  
Author(s):  
Yasumasa Tsukamoto ◽  
Jun-ichi Kato ◽  
Hideo Ikeda

Abstract To examine the mechanism of illegitimate recombination in Saccharomyces cerevisiae, we have developed a plasmid system for quantitative analysis of deletion formation. A can1 cyh2 cell carrying two negative selection markers, the CAN1 and CYH2 genes, on a YCp plasmid is sensitive to canavanine and cycloheximide, but the cell becomes resistant to both drugs when the plasmid has a deletion over the CAN1 and CYH2 genes. Structural analysis of the recombinant plasmids obtained from the resistant cells showed that the plasmids had deletions at various sites of the CAN1-CYH2 region and there were only short regions of homology (1-5 bp) at the recombination junctions. The results indicated that the deletion detected in this system were formed by illegitimate recombination. Study on the effect of several rad mutations showed that the recombination rate was reduced by 30-, 10-, 10-, and 10-fold in the rad52, rad50, mre11, and xrs2 mutants, respectively, while in the rud51, 54, 55, and 57 mutants, the rate was comparable to that in the wild-type strain. The rad52 mutation did not affect length of homology at junction sites of illegitimate recombination.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 618
Author(s):  
Yue Jin ◽  
Shihao Li ◽  
Yang Yu ◽  
Chengsong Zhang ◽  
Xiaojun Zhang ◽  
...  

A mutant of the ridgetail white prawn, which exhibited rare orange-red body color with a higher level of free astaxanthin (ASTX) concentration than that in the wild-type prawn, was obtained in our lab. In order to understand the underlying mechanism for the existence of a high level of free astaxanthin, transcriptome analysis was performed to identify the differentially expressed genes (DEGs) between the mutant and wild-type prawns. A total of 78,224 unigenes were obtained, and 1863 were identified as DEGs, in which 902 unigenes showed higher expression levels, while 961 unigenes presented lower expression levels in the mutant in comparison with the wild-type prawns. Based on Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes analysis, as well as further investigation of annotated DEGs, we found that the biological processes related to astaxanthin binding, transport, and metabolism presented significant differences between the mutant and the wild-type prawns. Some genes related to these processes, including crustacyanin, apolipoprotein D (ApoD), cathepsin, and cuticle proteins, were identified as DEGs between the two types of prawns. These data may provide important information for us to understand the molecular mechanism of the existence of a high level of free astaxanthin in the prawn.


Genetics ◽  
1998 ◽  
Vol 149 (2) ◽  
pp. 565-577
Author(s):  
Daniel B Szymanski ◽  
Daniel A Klis ◽  
John C Larkin ◽  
M David Marks

Abstract In Arabidopsis, the timing and spatial arrangement of trichome initiation is tightly regulated and requires the activity of the GLABROUS1 (GL1) gene. The COTYLEDON TRICHOME 1 (COT1) gene affects trichome initiation during late stages of leaf development and is described in this article. In the wild-type background, cot1 has no observable effect on trichome initiation. GL1 overexpression in wild-type plants leads to a modest number of ectopic trichomes and to a decrease in trichome number on the adaxial leaf surface. The cot1 mutation enhances GL1-overexpression-dependent ectopic trichome formation and also induces increased leaf trichome initiation. The expressivity of the cot1 phenotype is sensitive to cot1 and 35S::GL1 gene dosage, and the most severe phenotypes are observed when cot1 and 35S::GL1 are homozygous. The COT1 locus is located on chromosome 2 15.3 cM north of er. Analysis of the interaction between cot1, try, and 35S::GL1 suggests that COT1 is part of a complex signal transduction pathway that regulates GL1-dependent adoption of the trichome cell fate.


2020 ◽  
Vol 22 (1) ◽  
pp. 152
Author(s):  
Dorota Dabrowska ◽  
Justyna Mozejko-Ciesielska ◽  
Tomasz Pokój ◽  
Slawomir Ciesielski

Pseudomonas putida’s versatility and metabolic flexibility make it an ideal biotechnological platform for producing valuable chemicals, such as medium-chain-length polyhydroxyalkanoates (mcl-PHAs), which are considered the next generation bioplastics. This bacterium responds to environmental stimuli by rearranging its metabolism to improve its fitness and increase its chances of survival in harsh environments. Mcl-PHAs play an important role in central metabolism, serving as a reservoir of carbon and energy. Due to the complexity of mcl-PHAs’ metabolism, the manner in which P. putida changes its transcriptome to favor mcl-PHA synthesis in response to environmental stimuli remains unclear. Therefore, our objective was to investigate how the P. putida KT2440 wild type and mutants adjust their transcriptomes to synthesize mcl-PHAs in response to nitrogen limitation when supplied with sodium gluconate as an external carbon source. We found that, under nitrogen limitation, mcl-PHA accumulation is significantly lower in the mutant deficient in the stringent response than in the wild type or the rpoN mutant. Transcriptome analysis revealed that, under N-limiting conditions, 24 genes were downregulated and 21 were upregulated that were common to all three strains. Additionally, potential regulators of these genes were identified: the global anaerobic regulator (Anr, consisting of FnrA, Fnrb, and FnrC), NorR, NasT, the sigma54-dependent transcriptional regulator, and the dual component NtrB/NtrC regulator all appear to play important roles in transcriptome rearrangement under N-limiting conditions. The role of these regulators in mcl-PHA synthesis is discussed.


2021 ◽  
Vol 22 (8) ◽  
pp. 4014
Author(s):  
Lin-Feng Wang ◽  
Ting-Ting Li ◽  
Yu Zhang ◽  
Jia-Xing Guo ◽  
Kai-Kai Lu ◽  
...  

Osmotic stress severely inhibits plant growth and development, causing huge loss of crop quality and quantity worldwide. Melatonin is an important signaling molecule that generally confers plant increased tolerance to various environmental stresses, however, whether and how melatonin participates in plant osmotic stress response remain elusive. Here, we report that melatonin enhances plant osmotic stress tolerance through increasing ROS-scavenging ability, and melatonin receptor CAND2 plays a key role in melatonin-mediated plant response to osmotic stress. Upon osmotic stress treatment, the expression of melatonin biosynthetic genes including SNAT1, COMT1, and ASMT1 and the accumulation of melatonin are increased in the wild-type plants. The snat1 mutant is defective in osmotic stress-induced melatonin accumulation and thus sensitive to osmotic stress, while exogenous melatonin enhances the tolerance of the wild-type plant and rescues the sensitivity of the snat1 mutant to osmotic stress by upregulating the expression and activity of catalase and superoxide dismutase to repress H2O2 accumulation. Further study showed that the melatonin receptor mutant cand2 exhibits reduced osmotic stress tolerance with increased ROS accumulation, but exogenous melatonin cannot revert its osmotic stress phenotype. Together, our study reveals that CADN2 functions necessarily in melatonin-conferred osmotic stress tolerance by activating ROS-scavenging ability in Arabidopsis.


Genetics ◽  
2000 ◽  
Vol 155 (3) ◽  
pp. 1105-1117 ◽  
Author(s):  
W John Haynes ◽  
Kit-Yin Ling ◽  
Robin R Preston ◽  
Yoshiro Saimi ◽  
Ching Kung

Abstract Pawn mutants of Paramecium tetraurelia lack a depolarization-activated Ca2+ current and do not swim backward. Using the method of microinjection and sorting a genomic library, we have cloned a DNA fragment that complements pawn-B (pwB/pwB). The minimal complementing fragment is a 798-bp open reading frame (ORF) that restores the Ca2+ current and the backward swimming when expressed. This ORF contains a 29-bp intron and is transcribed and translated. The translated product has two putative transmembrane domains but no clear matches in current databases. Mutations in the available pwB alleles were found within this ORF. The d4-95 and d4-96 alleles are single base substitutions, while d4-662 (previously pawn-D) harbors a 44-bp insertion that matches an internal eliminated sequence (IES) found in the wild-type germline DNA except for a single C-to-T transition. Northern hybridizations and RT-PCR indicate that d4-662 transcripts are rapidly degraded or not produced. A second 155-bp IES in the wild-type germline ORF excises at two alternative sites spanning three asparagine codons. The pwB ORF appears to be separated from a 5′ neighboring ORF by only 36 bp. The close proximity of the two ORFs and the location of the pwB protein as indicated by GFP-fusion constructs are discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
José Francisco Cruz-Pérez ◽  
Roxana Lara-Oueilhe ◽  
Cynthia Marcos-Jiménez ◽  
Ricardo Cuatlayotl-Olarte ◽  
María Luisa Xiqui-Vázquez ◽  
...  

AbstractThe plant growth-promoting bacterium Azospirillum brasilense contains several genes encoding proteins involved in the biosynthesis and degradation of the second messenger cyclic-di-GMP, which may control key bacterial functions, such as biofilm formation and motility. Here, we analysed the function and expression of the cdgD gene, encoding a multidomain protein that includes GGDEF-EAL domains and CHASE and PAS domains. An insertional cdgD gene mutant was constructed, and analysis of biofilm and extracellular polymeric substance production, as well as the motility phenotype indicated that cdgD encoded a functional diguanylate protein. These results were correlated with a reduced overall cellular concentration of cyclic-di-GMP in the mutant over 48 h compared with that observed in the wild-type strain, which was recovered in the complemented strain. In addition, cdgD gene expression was measured in cells growing under planktonic or biofilm conditions, and differential expression was observed when KNO3 or NH4Cl was added to the minimal medium as a nitrogen source. The transcriptional fusion of the cdgD promoter with the gene encoding the autofluorescent mCherry protein indicated that the cdgD gene was expressed both under abiotic conditions and in association with wheat roots. Reduced colonization of wheat roots was observed for the mutant compared with the wild-type strain grown in the same soil conditions. The Azospirillum-plant association begins with the motility of the bacterium towards the plant rhizosphere followed by the adsorption and adherence of these bacteria to plant roots. Therefore, it is important to study the genes that contribute to this initial interaction of the bacterium with its host plant.


Sign in / Sign up

Export Citation Format

Share Document