A Grayscale Image Hiding Encode Scheme for Secure Transmission

2019 ◽  
Vol 14 (2) ◽  
pp. 146-151 ◽  
Author(s):  
C. Narmatha ◽  
P. Manimegalai ◽  
S. Manimurugan

Background: To transmit the secret data are in a secure manner or to prevent the intruder/ third party activities while transmitting secret data’s through the public networks are challenging task now. In order to deal with these situations, this paper presents an encryption/encoding technique of MSI (Modified Steganography for Image) for secret data before transmitting over the network. Methods: The MSI technique is classified into two phases, one is stegano image creation by encode process and another one is reconstructing the secret data from the stegano image by decode process. In encode process, the grayscale cover and secret images are considering as an input. In addition, segregation, 8-bit binary conversion, substitution and decimal conversion processes are doing a vital role in hiding the secret image into a cover image. The MSI encoded stegno image is almost equal to the cover image and it's not an easy to identify by the Human Visual Attack (HVA). Results & Conclusion: To evaluate the proposed MSI encoding process the time, signal to noise ratio, complexity and strength are considering as the parameters. In result, the MSI encode technique is providing good reconstruction image quality, strong against the pixel attack and HVA, less execution time than the conventional schemes.

2019 ◽  
Vol 8 (4) ◽  
pp. 11473-11478

In recent days, for sending secret messages, we require secure internet. Image steganography is considered as the eminent tool for data hiding which provides better security for the data transmitted over internet. In the proposed work, the payload data is embedded using improved LSB-mapping technique. In this approach, two bits from each pixel of carrier image are considered for mapping and addition. Two bits of payload data can be embedded in one cover image pixel hence enhanced the hiding capacity. A logical function on addition is applied on 1st and 2nd bits of cover image pixel, and a mapping table is constructed which gives solution for data hiding and extraction. Simple addition function on stego pixel is performed to extract payload data hence increases the recovery speed. Here the secret data is not directly embedded but instead mapped and added with a number using modulo-4 strategy. Hence the payload data hidden using proposed approach provide more security and it can resist against regular LSB decoding approaches. The proposed work is implemented and tested for several gray scale as well as color images and compared with respect to parameters like peak signal to noise ratio and MSE. The proposed technique gives better results when compared and histogram of cover and stego images are also compared.


2017 ◽  
Vol 26 (06) ◽  
pp. 1750103 ◽  
Author(s):  
Pankaj Garg ◽  
Singara Singh Kasana ◽  
Geeta Kasana

A Reversible Data Hiding technique by using histogram shifting and modulus operator is proposed in which secret data is embedded into blocks of the cover image. These blocks are modified by using modulus operator to increase the number of peak points in the histogram of the cover image which further increases its embedding capacity. Secret data is embedded in the original cover blocks of the cover image by using peak points of the predicted blocks, which are generated by using modulus operator. Peak Signal to Noise Ratio and PSNR-Human Visual System are used to show the human visual acceptance of the proposed technique. Experimental results show that the embedding capacity is high as compared to the capacity of existing RDH techniques, while distortion in marked images is also less as compared to distortion produced by these existing techniques.


Author(s):  
Ladeh S. Abdulraman ◽  
Sheerko R. Hma Salah ◽  
Halgurd S. Maghdid ◽  
Azhin T. Sabir

Steganography is a way to convey secret communication, with rapid electronic communication and high demand of using the internet, steganography has become a wide field of research and discussion. In this paper a new approach for hiding information in cover image proposed in spatial domain, the proposed approach divides the host image into blocks of size (8x8) pixels and message bits are embeds into the pixels of a cover image. The 64-pixel values of each block converted to be represented in binary system and compared with corresponding secret data bits for finding the matching and hold 6-pixels. The search process performed by comparing each secret data bit (8-bits) with created binary plane at the cover image, if matching is found the last row of the created binary plane which is (LSB) is modified to indicate the location of the matched bits sequence “which is the secret data” and number of the row, if matching is not found in all 7th rows the secret sequence is copied in to the corresponding 8th row location.The payload of this technique is 6 pixels’ message (48-bits) in each block. In the experiments secret messages are randomly embedded into different images. The quality of the stego-image from which the original text message is extracted is not affected at all. For validation of the presented mechanism, the capacity, the circuit complexity, and the measurement of distortion against steganalysis is evaluated using the peak-signal-to-noise ratio (PSNR) are analyzed.


A technique to hide undisclosed information from third party as well, the method of investigation to conceal secret data into the cover frame like text, audio, image and video without any change in substantial results to the carrier image is nothing but Steganography. The contemporary safe and taut steganography of image represents an exigent form of transformation of the inserted secrecy for the receiver with getting undetected [1-5]. In Image steganography, image is the carrier and any secret message (audio or text or image) can be transmitted. This algorithm of LSB can be executed in embedding territory where the secret audio data is inserted into the LSB of envelope image for creating the stego image. This paper gives the hiding of audio data as secret data in an image file using LSB with secret key and an improved inverted LSB image Steganography with improved mean square error and peak signal to noise ratio.


2012 ◽  
Vol 6-7 ◽  
pp. 428-433
Author(s):  
Yan Wei Li ◽  
Mei Chen Wu ◽  
Tung Shou Chen ◽  
Wien Hong

We propose a reversible data hiding technique to improve Hong and Chen’s (2010) method. Hong and Chen divide the cover image into pixel group, and use reference pixels to predict other pixel values. Data are then embedded by modifying the prediction errors. However, when solving the overflow and underflow problems, they employ a location map to record the position of saturated pixels, and these pixels will not be used to carry data. In their method, if the image has a plenty of saturated pixels, the payload is decreased significantly because a lot of saturated pixels will not joint the embedment. We improve Hong and Chen’s method such that the saturated pixels can be used to carry data. The positions of these saturated pixels are then recorded in a location map, and the location map is embedded together with the secret data. The experimental results illustrate that the proposed method has better payload, will providing a comparable image quality.


2020 ◽  
Vol 4 (2) ◽  
pp. 53-60
Author(s):  
Latifah Listyalina ◽  
Yudianingsih Yudianingsih ◽  
Dhimas Arief Dharmawan

Image processing is a technical term useful for modifying images in various ways. In medicine, image processing has a vital role. One example of images in the medical world, namely retinal images, can be obtained from a fundus camera. The retina image is useful in the detection of diabetic retinopathy. In general, direct observation of diabetic retinopathy is conducted by a doctor on the retinal image. The weakness of this method is the slow handling of the disease. For this reason, a computer system is required to help doctors detect diabetes retinopathy quickly and accurately. This system involves a series of digital image processing techniques that can process retinal images into good quality images. In this research, a method to improve the quality of retinal images was designed by comparing the methods for adjusting histogram equalization, contrast stretching, and increasing brightness. The performance of the three methods was evaluated using Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR), and Signal to Noise Ratio (SNR). Low MSE values and high PSNR and SNR values indicated that the image had good quality. The results of the study revealed that the image was the best to use, as evidenced by the lowest MSE values and the highest SNR and PSNR values compared to other techniques. It indicated that adaptive histogram equalization techniques could improve image quality while maintaining its information.


2018 ◽  
Vol 45 (6) ◽  
pp. 767-778 ◽  
Author(s):  
Amjad Rehman ◽  
Tanzila Saba ◽  
Toqeer Mahmood ◽  
Zahid Mehmood ◽  
Mohsin Shah ◽  
...  

In the current era, due to the widespread availability of the Internet, it is extremely easy for people to communicate and share multimedia contents with each other. However, at the same time, secure transfer of personal and copyrighted material has become a critical issue. Consequently, secure means of data transfer are the most urgent need of the time. Steganography is the science and art of protecting the secret data from an unauthorised access. The steganographic approaches conceal secret data into a cover file of type audio, video, text and/or image. The actual challenge in steganography is to achieve high robustness and capacity without bargaining on the imperceptibility of the cover file. In this article, an efficient steganography method is proposed for the transfer of secret data in digital images using number theory. For this purpose, the proposed method represents the cover image using the Fibonacci sequence. The representation of an image in the Fibonacci sequence allows increasing the bit planes from 8-bit to 12-bit planes. The experimental results of the proposed method in comparison with other existing steganographic methods exhibit that our method not only achieves high embedding of secret data but also gives high quality of stego images in terms of peak signal-to-noise ratio (PSNR). Furthermore, the robustness of the technique is also evaluated in the presence of salt and pepper noise attack on the cover images.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2063
Author(s):  
Jiang-Yi Lin ◽  
Ji-Hwei Horng ◽  
Chin-Chen Chang

The (k, n)-threshold reversible secret image sharing (RSIS) is technology that conceals the secret data in a cover image and produces n shadow versions. While k (kn) or more shadows are gathered, the embedded secret data and the cover image can be retrieved without any error. This article proposes an optimal (2, 3) RSIS algorithm based on a crystal-lattice matrix. Sized by the assigned embedding capacity, a crystal-lattice model is first generated by simulating the crystal growth phenomenon with a greedy algorithm. A three-dimensional (3D) reference matrix based on translationally symmetric alignment of crystal-lattice models is constructed to guide production of the three secret image shadows. Any two of the three different shares can cooperate to restore the secret data and the cover image. When all three image shares are available, the third share can be applied to authenticate the obtained image shares. Experimental results prove that the proposed scheme can produce secret image shares with a better visual quality than other related works.


Author(s):  
Shrutika Khobragade ◽  
Rohini Bhosale ◽  
Rahul Jiwahe

Cloud Computing makes immense use of internet to store a huge amount of data. Cloud computing provides high quality service with low cost and scalability with less requirement of hardware and software management. Security plays a vital role in cloud as data is handled by third party hence security is the biggest concern to matter. This proposed mechanism focuses on the security issues on the cloud. As the file is stored at a particular location which might get affected due to attack and will lost the data. So, in this proposed work instead of storing a complete file at a particular location, the file is divided into fragments and each fragment is stored at various locations. Fragments are more secured by providing the hash key to each fragment. This mechanism will not reveal all the information regarding a particular file even after successful attack. Here, the replication of fragments is also generated with strong authentication process using key generation. The auto update of a fragment or any file is also done here. The concept of auto update of filles is done where a file or a fragment can be updated online. Instead of downloading the whole file, a fragment can be downloaded to update. More time is saved using this methodology.


2021 ◽  
Vol 23 (Winter 2021) ◽  
Author(s):  
Ramazan Erdağ

This article discusses why Russia replaced the South Stream project with the TurkStream by changing its route and name, and why Turkey is involved in a project on the North-South line although it plays a vital role in the Trans-Anatolia Natural Gas Pipeline (TANAP) project in the southern gas corridor. The article first examines the Russia-Ukraine natural gas crisis. It then moves to analyze the reasons behind Russia’s changing of the name and the route of the South Stream project. After exploring Turkey’s involvement in the project, the article concludes by arguing that both countries adopted a win-win approach toward the project that Russia has gained a significant tariff advantage and freedom from the EU third-party-access rule. The article claims that although both Russia and Turkey have different perspectives on some issues in international politics, they can develop their cooperation with a win-win approach in the TurkStream project.


Sign in / Sign up

Export Citation Format

Share Document