A Network Pharmacology Approach to Explore the Underlying Mechanism of Tufuling Qiwei Tangsan in Treating Psoriasis

2021 ◽  
Vol 16 ◽  
Author(s):  
Xiaolei Ma ◽  
Yinan Lu ◽  
Yang Lu ◽  
Zhili Pei

Background: Tufuling Qiwei Tangsan (TQTS) is a commonly used Mongolian medicine preparation against psoriasis in China. However, its mechanism of action and molecular targets for the treatment of psoriasis is still unclear. Network pharmacology can reveal the synergistic mechanism of drugs at the molecular, target and pathway levels, and is suitable for the complex study of traditional Chinese medicine formulations. However, it is rarely involved in the application of Mongolian medicine with the same holistic concept of traditional Chinese medicine. Method: In this paper, the active compounds of TQTS were collected and their targets were identified. Psoriasis-related targets were obtained by analyzing the differential expressed genes between psoriasis patients and healthy individuals. Then, the network concerning the interactions of potential targets of TQTS with well-known psoriasis-related targets was built. The core targets were selected according to topological parameters. And the enrichment analysis was carried out to explore the mechanism of action of TQTS. Moreover, molecular docking was performed to study the interaction between the selected ligands and receptors related to psoriasis. Result and Conclusion: Eighty-five active compounds of TQTS were screened, with corresponding 270 targets, and 313 differentially expressed genes were identified. Additionally, enrichment analysis showed that the targets of TQTS for treating psoriasis were mainly concentrated in multiple biological processes, including apoptosis, growth factor response,etc., and related pathways including PI3K-Akt and MAPK signaling pathway, and so on. Genes such as NFKB1, TP53 and MAPK1 are the key genes in the gene pathway network of TQTS against psoriasis. The 4 main active components of TQTS have certain binding activity with 13 potential targets, and the stability of interaction with AKT1 is the best, which indicate the potential mechanism of TQTS on psoriasis.

2021 ◽  
Author(s):  
Xiaojian Wang ◽  
Rui Wang ◽  
Ting Xu ◽  
Hongting Jin ◽  
Peijian Tong ◽  
...  

Abstract Background The lesion of marrow is a crucial factor in orthopedic diseases, which is recognized by orthopedics-traumatology expert from "Zhe-School of Chinese Medicine". The Chinese herbs of regulating marrow has been widely used to treat osteonecrosis of the femoral head (ONFH) in China, while the interaction mechanisms were still elucidated. Thus, we conducted this study to explore the underlying mechanism of the five highest-frequency Chinese herbs of regulating marrow(HF-CHRM) in the treatment of ONFH with the aid of network pharmacology(NP) and molecular docking(MD). Methods The active components and potential targets of HF-CHRM were obtained through several online databases, such as Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), UniProt database. The gene targets related to ONFH were collected with the help of the OMIM and GeneCards disease-related databases. The "drug- component-target-disease" network and protein-protein interaction(PPI) network of the drug and disease intersecting targets were constructed by using Cytoscape software and the STRING database. R software was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The MD of critical components and targets was carried out using Autodock Vina and Pymol to validate the binding affinity. Results A total of 54 active components, 1074 drug targets and 195 gene targets were obtained. There were 1219 ONFH related targets. 39 drug and disease intersection targets(representative genes: IL6, TP53, VEGFA, ESR1, IL1B) were obtained and considered potential therapeutic targets. 1619 items were obtained by the GO enrichment analysis, including 1517 biological processes, 10 cellular components and 92 molecular functions, which is mainly related to angiogenesis, bone and lipid metabolism and inflammatory reaction. The KEGG pathway enrichment analysis revealed 119 pathways, including AGE-RAGE signaling pathway, PI3K-Akt signaling pathway and IL-17 signaling pathway. MD results showed that quercetin, wogonin, and kaempferol active components had good affinity with IL6, TP53, and VEGFA core proteins. Conclusion The HF-CHRM can treat ONFH by multi-component, multi-target, and multi-pathway comprehensive action.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Chunli Piao ◽  
Qi Zhang ◽  
De Jin ◽  
Li Wang ◽  
Cheng Tang ◽  
...  

Diabetic nephropathy (DN) is one of the most common complications of diabetes mellitus. Owing to its complicated pathogenesis, no satisfactory treatment strategies for DN are available. Milkvetch Root is a common traditional Chinese medicine (TCM) and has been extensively used to treat DN in clinical practice in China for many years. However, due to the complexity of botanical ingredients, the exact pharmacological mechanism of Milkvetch Root in treating DN has not been completely elucidated. The aim of this study was to explore the active components and potential mechanism of Milkvetch Root by using a systems pharmacology approach. First, the components and targets of Milkvetch Root were analyzed by using the Traditional Chinese Medicine Systems Pharmacology database. We found the common targets of Milkvetch Root and DN constructed a protein-protein interaction (PPI) network using STRING and screened the key targets via topological analysis. Enrichment of Gene Ontology (GO) pathways and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed. Subsequently, major hubs were identified and imported to the Database for Annotation, Visualization and Integrated Discovery for pathway enrichment analysis. The binding activity and targets of the active components of Milkvetch Root were verified by using the molecular docking software SYBYL. Finally, we found 20 active components in Milkvetch Root. Moreover, the enrichment analysis of GO and KEGG pathways suggested that AGE-RAGE signaling pathway, HIF-1 signaling pathway, PI3K-Akt signaling pathway, and TNF signaling pathway might be the key pathways for the treatment of DN; more importantly, 10 putative targets of Milkvetch Root (AKT1, VEGFA, IL-6, PPARG, CCL2, NOS3, SERPINE1, CRP, ICAM1, and SLC2A) were identified to be of great significance in regulating these biological processes and pathways. This study provides an important scientific basis for further elucidating the mechanism of Milkvetch Root in treating DN.


2020 ◽  
Vol 23 (1) ◽  
pp. 28-40
Author(s):  
Jia Li ◽  
Xinchang Qi ◽  
Yajuan Sun ◽  
Yingyu Zhang ◽  
Jiajun Chen

Aim and Objective: Effective components and the mechanism of action of Zhichan powder for the treatment of Parkinson's disease were researched at a systematic level. Materials and Methods: Screening of active components in Zhichan powder for the treatment of Parkinson's disease was conducted using the Traditional Chinese Medicine Systems Pharmacology database, and a medicine-target-disease network was established with computational network pharmacology. Results: By using network pharmacology methods, we identified 18 major active components in Zhichan powder through screening, indicating a connection between chemical components of this Traditional Chinese Medicine and Parkinson’s disease-related targets. Conclusion: The medicine-target-disease system of Zhichan powder established by network pharmacology permitted visualization of clustering and differences among chemical components in this prescription, as well as the complex mechanism of molecular activities among those effective components, relevant targets, pathways, and the disease. Thus, our results provide a new perspective and method for revealing the mechanism of action of Traditional Chinese Medicine prescriptions.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Wenhao Niu ◽  
Feng Wu ◽  
Haiming Cui ◽  
Wenyue Cao ◽  
YuChieh Chao ◽  
...  

“Three formulas and three medicines,” which include Jinhua Qinggan granule, Lianhua Qingwen capsule/granule, Xuebijing injection, Qingfei Paidu decoction, HuaShiBaiDu formula, and XuanFeiBaiDu granule, have been proven to be effective in curbing coronavirus disease 2019 (COVID-19), according to the State Administration of Traditional Chinese Medicine. The aims of this study were to identify the active components of “Three formulas and three medicines” that can be used to treat COVID-19, determine their mechanism of action via angiotensin-converting enzyme 2 (ACE2) by integrating network pharmacological approaches, and confirm the most effective components for COVID-19 treatment or prevention. We investigated all the compounds present in the aforementioned herbal ingredients. Compounds that could downregulate the transcription factors (TFs) of ACE2 and upregulate miRNAs of ACE2 were screened via a network pharmacology approach. Hepatocyte nuclear factor 4 alpha (HNF4A), peroxisome proliferator-activated receptor gamma (PPARG), hsa-miR-2113, and hsa-miR-421 were found to regulate ACE2. Several compounds, such as quercetin, decreased ACE2 expression by regulating the aforementioned TFs or miRNAs. After comparison with the compounds present in Glycyrrhiza Radix et Rhizoma, quercetin, glabridin, and gallic acid present in the herbal formulas and medicines were found to alter ACE2 expression. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used to search for possible molecular mechanisms of these compounds. In conclusion, traditional Chinese medicine (TCM) plays a pivotal role in the prevention and treatment of COVID-19. Quercetin, glabridin, and gallic acid, the active components of recommended TCM formulas and medicines, can inhibit COVID-19 by downregulating ACE2.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Qian Wang ◽  
Yan Liang ◽  
Can Peng ◽  
Peng Jiang

Hepatocellular carcinoma (HCC) is a malignant tumor without effective therapeutic drugs for most patients in advanced stages. Scutellariae Radix (SR) is a well-known anti-inflammatory and anticarcinogenic herbal medicine. However, the mechanism of SR against HCC remains to be clarified. In the present study, network pharmacology was utilized to characterize the mechanism of SR on HCC. The active components of SR and their targets were collected from the traditional Chinese medicine systems pharmacology database and the traditional Chinese medicine integrated database. HCC-related targets were acquired from the liver cancer databases OncoDB.HCC and Liverome. The gene ontology and the Kyoto Encyclopedia of Genes and Genomes pathway were analyzed using the Database for Annotation, Visualization, and Integrated Discovery. Component-component target and protein-protein interaction networks were set up. A total of 143 components of SR were identified, and 37 of them were considered as candidate active components. Fifty targets corresponding to 29 components of SR were mapped with targets of HCC. Functional enrichment analysis indicated that SR exerted an antihepatocarcinoma effect by regulating pathways in cancer, hepatitis B, viral carcinogenesis, and PI3K-Akt signaling. The holistic approach of network pharmacology can provide novel insights into the mechanistic study and therapeutic drug development of SR for HCC treatment.


2021 ◽  
Author(s):  
Xin-Zhou Huang ◽  
Hui Chen ◽  
Yu-Ming Wang ◽  
Xi-He Zhang ◽  
Ke-Bin Liu ◽  
...  

Abstract Background: Drynaria Fortunei and Cuscuta Chinensis are among the most used traditional Chinese medicine herbal prescriptions and have a significant therapeutic effect on osteoarthritis. However, the purpose of this study intends to elaborate the molecular mechanism of action through network pharmacology. The active ingredients of TCM and the potential targets for the treatment of osteoarthritis were selected through the TCMSP, OMIM and Genecards. Results: The 27 components and 85/117 targets of Drynaria Fortunei and/or Cuscuta Chinensis were identified for osteoarthritis. Pharmacological and PPI network analysis identified top 3 active components (kaempferol, luteolin, and quercetin) and core proteins (IL6, AKT1, and VEGFA). GO and KEGG analysis identified the top 3 functions (cytokine and cell/nuclear receptor) and pathways (PI3K-Akt, TNF and IL-17). Molecular docking showed strong binding ability between quercetin-AKT1 and luteolin-IL6/VEGFA. Interaction analysis mapped the quercetin-AKT1 and luteolin-IL6/VEGFA binding to specific hydrogen and hydrophobic bonds. Conclusions: The main active components, common target proteins, functional activities, and signaling pathways of TCM Drynaria Fortunei and Cuscuta Chinensis for the treatment of osteoarthritis were identified by Network pharmacology. We found, for the first time, that drynariae rhizoma and cuscuta chinensis suppress osteoarthritis by quercetin-AKT1/IL6 and luteolin-VEGFA direct binding. Our findings have significant implication for our understanding of the molecular mechanism of action in the treatment of osteoarthritis and future development of osteoarthritis treatment using quercetin and luteolin.


2021 ◽  
Author(s):  
tan xin ◽  
Wei Xian ◽  
Xiaorong Li ◽  
Yongfeng Chen ◽  
Jiayi Geng ◽  
...  

Abstract PurposeAtrial fibrillation (AF) is a common atrial arrhythmia. Quercetin (Que) has some advantages in the treatment of cardiovascular disease arrhythmias, but its specific drug mechanism of action needs further investigation. To explore the mechanism of action of Que in AF, core target speculation and analysis were performed using network pharmacology and molecular docking methods.MethodsQue chemical structures were obtained from Pubchem. TCMSP, Swiss Target Prediction, Drugbank , STITCH, Binding DB, Pharmmapper, CTD, GeneCards, DISGENET and TTD were used to obtain drug component targets and AF-related genes, and extract AF from normal tissues by GEO database differentially expressed genes. Then, the intersecting genes were obtained by online Wayne mapping tool. The intersection genes were introduced into the top five targets selected for molecular docking via protein-protein interaction (PPI) network to verify the binding activity between Que and the target proteins. GO and KEGG enrichment analysis of the intersected genes using program R was performed to further screen for key genes and key pathways.ResultsThere were 65 effective targets for Que and AF. Through further screening, the top 5 targets were IL6, VEGFA, JUN, MMP9 and EGFR. Que treatment of AF may involve signaling pathways such as lipid and atherosclerosis pathway, AGE-RAGE signaling pathway in diabetic complications, MAPK signaling pathway and IL-17 signaling pathway. Molecular docking suggests that Que has strong binding to key targets.ConclusionThis study systematically elucidates the key targets of Que treatment for AF and the specific mechanisms through network pharmacology as well as molecular docking, providing a new direction for further basic experimental exploration and clinical treatment.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Yin Qu ◽  
Zhijun Zhang ◽  
Yafeng Lu ◽  
De Zheng ◽  
Yang Wei

Background. The healing process of the surgical wound of anal fistulotomy is much slower because of the presence of stool within the wound. Cuyuxunxi (CYXX) prescription is a Chinese herbal fumigant that is being used to wash surgical wound after anal fistulotomy. This study aimed at investigating the molecular mechanism of CYXX prescription using a network pharmacology-based strategy. Materials and Methods. The active compounds in each herbal medicine were retrieved from the traditional Chinese medicine systems pharmacology (TCMSP) database and in Traditional Chinese Medicine Integrated Database (TCMID) analysis platform based on the criteria of oral bioavailability ≥40% and drug-likeness ≥0.2. The disease-related target genes were extracted from the Comparative Toxicogenomics Database. Protein-protein interaction network was built for the overlapped genes as well as functional enrichment analysis. Finally, an ingredient-target genes-pathway network was built by integrating all information. Results. A total of 375 chemical ingredients of the 5 main herbal medicines in CYXX prescription were retrieved from TCMSP database and TCMID. Among the 375 chemical ingredients, 59 were active compounds. Besides, 325 target genes for 16 active compounds in 3 herbal medicines were obtained. Functional enrichment analysis revealed that these overlapped genes were significantly related with immune response, biosynthesis of antibiotics, and complement and coagulation cascades. A comprehensive network which contains 133 nodes (8 disease nodes, 3 drug nodes, 8 ingredients, 103 target gene nodes, 7 GO nodes, and 4 pathway nodes) was built. Conclusion. The network built in this study might aid in understanding the action mechanism of CYXX prescription at molecular level to pathway level.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Shuyue Wang ◽  
Fei Guo ◽  
Xiaochen Sun ◽  
Xiao Song ◽  
Yaohui Yuan ◽  
...  

Background. Hypertensive vascular remodeling (HVR) is the pathophysiological basis of hypertension, which is also an important cause of vascular disease and target organ damage. Treatment with Fructus Tribuli (FT), a traditional Chinese medicine, has a positive effect on HVR. However, the pharmacological mechanisms of FT are still unclear. Therefore, this study aimed to reveal the potential mechanisms involved in the effects of FT on HVR based on network pharmacology and molecular docking. Materials and Methods. We selected the active compounds and targets of FT according to the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and the Swiss Target Prediction database, and the targets of HVR were collected from the Online Mendelian Inheritance in Man (OMIM), GeneCards, and DrugBank databases. The protein-protein interaction network (PPI) was established using the STRING database. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses and network analysis were performed to further explore the potential mechanisms. Finally, molecular docking methods were used to evaluate the affinity between the active compounds and the main target. Results. Seventeen active compounds of FT  and 164 potential targets for the treatment of HVR were identified. Component-target and PPI networks were constructed, and 12 main active components and 33 main targets were identified by analyzing the topological parameters. Additionally, GO analysis indicated that the potential targets were enriched in 483 biological processes, 52 cellular components, and 110 molecular functions. KEGG analysis revealed that the potential targets were correlated with 122 pathways, such as the HIF-1 signaling pathway, ErbB signaling pathway, and VEGF signaling pathway. Finally, molecular docking showed that the 12 main active components had a good affinity for the top five main targets. Conclusion. This study demonstrated the multiple compounds, targets, and pathway characteristics of FT in the treatment of HVR. The network pharmacology method provided a novel research approach to analyze potential mechanisms.


2020 ◽  
Author(s):  
Xiaolin Zhang ◽  
Di Cao ◽  
Qi Zhang ◽  
Dehui Ma ◽  
Mingjun Liu

Abstract Background: In this study, network pharmacology method was used to systematically predict and analyze the mechanism of "Common treatment for different diseases" effect of Dachaihu Decoction(DCHD) in the treatment of Prediabetes(PD) and Acute hemorrhagic stroke(AHS).Methods: TCMsp (Traditional Chinese Medicine systems pharmacology database and analysis platform) database was used to collect all the candidate active components related to 8 kinds of traditional Chinese medicine of DCHD, and UniProt database was used to obtain the drug action target and construct the "traditional Chinese medicine -Compound -target" action network; Genecards, OMIM(Online Mendelian Inheritance in Man), DisGeNET, CTD(Comparative Toxicogenomics Database) and TTD(Therapeutic Target Database)databases were used to obtain the related genes of PD and AHS respectively, and the interaction analysis of Venn with potential active components was carried out to obtain the common target of DCHD in the treatment of the two diseases.Using STRING 11.0 and Cytoscape3.72 to analyze protein-protein interaction of common targets and screen key common targets. BioGPS was used to obtain the distribution information in organs and tissues, and the relationship between the molecules and the key functional molecules were described. Bioconductor (R) was used to analyze the gene ontology (go) enrichment and the pathway analysis of the Kyoto Encyclopedia of genes and genomes (KEGG), so as to systematically predict the mechanism of "Common treatment for different diseases" of DCHD for PD and AHS.Results: with OB ≥ 30% and DL ≥ 0.18 as the screening criteria, 133 active compounds were screened out and 1034 drug targets were obtained; There are 3878 PD gene targets, 2674 AHS gene targets, 129 drug disease common targets, and 10 key targets whose median value is greater than 18;The key common targets displayed by biogps are mainly distributed in CD33+_ Myeloid.2(degree = 4),Prostate.2(degree = 3),CD56+_ NKCells.1(degree = 3),Lung.2(degree = 3),CD56+_ Nkcells. 2 (degree = 2);2281 biological processes, 65 cell components and 142 molecular functions were obtained by GO functional enrichment analysis;161 signal pathways were obtained by KEGG enrichment analysis, and the ones with higher proportion were AGE-RAGE signaling pathway in diabetic complications,PI3K-Akt signaling pathway,TNF signaling pathway,IL-17 signaling pathway,MAPK signaling pathway,HIF-1 signaling pathway,Relaxin signaling pathwa,C-type lectin receptor signaling pathway,which is mainly related to oxidative stress, glycolipid metabolism, immune inflammatory response, and neuroendocrine.Conclusion: DCHD can achieve the effect of "Common treatment for different diseases" by acting on the common receptor of PD and AHS through multi-component, multi-target and multi-channel, providing reference for further experimental verification, potential pharmacological mechanism and clinical application.


Sign in / Sign up

Export Citation Format

Share Document