scholarly journals Study on The Effect Mechanism of “Common Treatment for Different Diseases” of Dachaihu Decoction on Prediabetes and Acute Hemorrhagic Stroke Based on Network Pharmacology

2020 ◽  
Author(s):  
Xiaolin Zhang ◽  
Di Cao ◽  
Qi Zhang ◽  
Dehui Ma ◽  
Mingjun Liu

Abstract Background: In this study, network pharmacology method was used to systematically predict and analyze the mechanism of "Common treatment for different diseases" effect of Dachaihu Decoction(DCHD) in the treatment of Prediabetes(PD) and Acute hemorrhagic stroke(AHS).Methods: TCMsp (Traditional Chinese Medicine systems pharmacology database and analysis platform) database was used to collect all the candidate active components related to 8 kinds of traditional Chinese medicine of DCHD, and UniProt database was used to obtain the drug action target and construct the "traditional Chinese medicine -Compound -target" action network; Genecards, OMIM(Online Mendelian Inheritance in Man), DisGeNET, CTD(Comparative Toxicogenomics Database) and TTD(Therapeutic Target Database)databases were used to obtain the related genes of PD and AHS respectively, and the interaction analysis of Venn with potential active components was carried out to obtain the common target of DCHD in the treatment of the two diseases.Using STRING 11.0 and Cytoscape3.72 to analyze protein-protein interaction of common targets and screen key common targets. BioGPS was used to obtain the distribution information in organs and tissues, and the relationship between the molecules and the key functional molecules were described. Bioconductor (R) was used to analyze the gene ontology (go) enrichment and the pathway analysis of the Kyoto Encyclopedia of genes and genomes (KEGG), so as to systematically predict the mechanism of "Common treatment for different diseases" of DCHD for PD and AHS.Results: with OB ≥ 30% and DL ≥ 0.18 as the screening criteria, 133 active compounds were screened out and 1034 drug targets were obtained; There are 3878 PD gene targets, 2674 AHS gene targets, 129 drug disease common targets, and 10 key targets whose median value is greater than 18;The key common targets displayed by biogps are mainly distributed in CD33+_ Myeloid.2(degree = 4),Prostate.2(degree = 3),CD56+_ NKCells.1(degree = 3),Lung.2(degree = 3),CD56+_ Nkcells. 2 (degree = 2);2281 biological processes, 65 cell components and 142 molecular functions were obtained by GO functional enrichment analysis;161 signal pathways were obtained by KEGG enrichment analysis, and the ones with higher proportion were AGE-RAGE signaling pathway in diabetic complications,PI3K-Akt signaling pathway,TNF signaling pathway,IL-17 signaling pathway,MAPK signaling pathway,HIF-1 signaling pathway,Relaxin signaling pathwa,C-type lectin receptor signaling pathway,which is mainly related to oxidative stress, glycolipid metabolism, immune inflammatory response, and neuroendocrine.Conclusion: DCHD can achieve the effect of "Common treatment for different diseases" by acting on the common receptor of PD and AHS through multi-component, multi-target and multi-channel, providing reference for further experimental verification, potential pharmacological mechanism and clinical application.

2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Chunli Piao ◽  
Qi Zhang ◽  
De Jin ◽  
Li Wang ◽  
Cheng Tang ◽  
...  

Diabetic nephropathy (DN) is one of the most common complications of diabetes mellitus. Owing to its complicated pathogenesis, no satisfactory treatment strategies for DN are available. Milkvetch Root is a common traditional Chinese medicine (TCM) and has been extensively used to treat DN in clinical practice in China for many years. However, due to the complexity of botanical ingredients, the exact pharmacological mechanism of Milkvetch Root in treating DN has not been completely elucidated. The aim of this study was to explore the active components and potential mechanism of Milkvetch Root by using a systems pharmacology approach. First, the components and targets of Milkvetch Root were analyzed by using the Traditional Chinese Medicine Systems Pharmacology database. We found the common targets of Milkvetch Root and DN constructed a protein-protein interaction (PPI) network using STRING and screened the key targets via topological analysis. Enrichment of Gene Ontology (GO) pathways and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed. Subsequently, major hubs were identified and imported to the Database for Annotation, Visualization and Integrated Discovery for pathway enrichment analysis. The binding activity and targets of the active components of Milkvetch Root were verified by using the molecular docking software SYBYL. Finally, we found 20 active components in Milkvetch Root. Moreover, the enrichment analysis of GO and KEGG pathways suggested that AGE-RAGE signaling pathway, HIF-1 signaling pathway, PI3K-Akt signaling pathway, and TNF signaling pathway might be the key pathways for the treatment of DN; more importantly, 10 putative targets of Milkvetch Root (AKT1, VEGFA, IL-6, PPARG, CCL2, NOS3, SERPINE1, CRP, ICAM1, and SLC2A) were identified to be of great significance in regulating these biological processes and pathways. This study provides an important scientific basis for further elucidating the mechanism of Milkvetch Root in treating DN.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Qian Wang ◽  
Yan Liang ◽  
Can Peng ◽  
Peng Jiang

Hepatocellular carcinoma (HCC) is a malignant tumor without effective therapeutic drugs for most patients in advanced stages. Scutellariae Radix (SR) is a well-known anti-inflammatory and anticarcinogenic herbal medicine. However, the mechanism of SR against HCC remains to be clarified. In the present study, network pharmacology was utilized to characterize the mechanism of SR on HCC. The active components of SR and their targets were collected from the traditional Chinese medicine systems pharmacology database and the traditional Chinese medicine integrated database. HCC-related targets were acquired from the liver cancer databases OncoDB.HCC and Liverome. The gene ontology and the Kyoto Encyclopedia of Genes and Genomes pathway were analyzed using the Database for Annotation, Visualization, and Integrated Discovery. Component-component target and protein-protein interaction networks were set up. A total of 143 components of SR were identified, and 37 of them were considered as candidate active components. Fifty targets corresponding to 29 components of SR were mapped with targets of HCC. Functional enrichment analysis indicated that SR exerted an antihepatocarcinoma effect by regulating pathways in cancer, hepatitis B, viral carcinogenesis, and PI3K-Akt signaling. The holistic approach of network pharmacology can provide novel insights into the mechanistic study and therapeutic drug development of SR for HCC treatment.


2021 ◽  
Vol 16 (1) ◽  
pp. 1934578X2098842
Author(s):  
Li Cheng ◽  
Fei Wang ◽  
Shun Bo Zhang ◽  
Qiu Yun You

Purpose Fufang Banlangen Keli (FBK) has been recommended for its clinical treatment of Coronavirus disease 2019 (COVID-19) and severe acute respiratory syndrome (SARS), but the mechanism of action is unclear. So, using network pharmacology and molecular docking, we studied the active components and mechanism of FBK in the treatment of COVID-19 and SARS. Methods The Encyclopedia of Traditional Chinese Medicine and Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform were used to screen the active components by oral bioactivity and drug likeness. Then, PharmMapper and SwissTargetPrediction databases were used to screen potential target genes of active components; the related target genes of COVID-19 and SARS were obtained from the GeneCards database. The intersection of the active components and disease-related targets was performed by the Venny2.1.0 database. The DAVID6.8 database and KOBAS3.0 database were used to get gene ontology (GO) function enrichment and Kyoto Encyclopedia of Genes and Genomes pathway annotation of gene targets. The “components-targets-pathways (C-T-P)” network of FBK was conducted by Cytoscape3.6.1 software. The top active components, angiotensin-converting enzyme 2 (ACE2) and SARS-CoV-2 3 Cl, were imported into AutoDock and PyMOL for molecular docking. Results From the FBK, a total of 28 active components and 73 gene targets were screened through network pharmacology. Twenty pathways were analyzed, including pathways in cancer, nod-like receptor signaling pathway, and pancreatic cancer, etc. ( P < 0.05). A total of 337 items were obtained by GO functional enrichment analysis ( P < 0.05), including 257 items for biological process, 38 items for cell composition, and 42 items for molecular function. Furthermore, molecular docking studies were performed to study potential binding between the key gene targets and selected active components. Conclusion Based on network pharmacology and molecular docking technology, qingdainone, (2Z)-2-(2-oxoindolin-3-ylidene) indolin-3-one, sinensetin, and acacetin in FBK were verified to bind to ACE2 and SARS-COV-2 3 Cl, so as to treat COVID-19 and SARS.


2021 ◽  
Author(s):  
Xiaojian Wang ◽  
Rui Wang ◽  
Ting Xu ◽  
Hongting Jin ◽  
Peijian Tong ◽  
...  

Abstract Background The lesion of marrow is a crucial factor in orthopedic diseases, which is recognized by orthopedics-traumatology expert from "Zhe-School of Chinese Medicine". The Chinese herbs of regulating marrow has been widely used to treat osteonecrosis of the femoral head (ONFH) in China, while the interaction mechanisms were still elucidated. Thus, we conducted this study to explore the underlying mechanism of the five highest-frequency Chinese herbs of regulating marrow(HF-CHRM) in the treatment of ONFH with the aid of network pharmacology(NP) and molecular docking(MD). Methods The active components and potential targets of HF-CHRM were obtained through several online databases, such as Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), UniProt database. The gene targets related to ONFH were collected with the help of the OMIM and GeneCards disease-related databases. The "drug- component-target-disease" network and protein-protein interaction(PPI) network of the drug and disease intersecting targets were constructed by using Cytoscape software and the STRING database. R software was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The MD of critical components and targets was carried out using Autodock Vina and Pymol to validate the binding affinity. Results A total of 54 active components, 1074 drug targets and 195 gene targets were obtained. There were 1219 ONFH related targets. 39 drug and disease intersection targets(representative genes: IL6, TP53, VEGFA, ESR1, IL1B) were obtained and considered potential therapeutic targets. 1619 items were obtained by the GO enrichment analysis, including 1517 biological processes, 10 cellular components and 92 molecular functions, which is mainly related to angiogenesis, bone and lipid metabolism and inflammatory reaction. The KEGG pathway enrichment analysis revealed 119 pathways, including AGE-RAGE signaling pathway, PI3K-Akt signaling pathway and IL-17 signaling pathway. MD results showed that quercetin, wogonin, and kaempferol active components had good affinity with IL6, TP53, and VEGFA core proteins. Conclusion The HF-CHRM can treat ONFH by multi-component, multi-target, and multi-pathway comprehensive action.


2020 ◽  
Author(s):  
Ying Li ◽  
Guhang Wei ◽  
Zhenkun Zhuang ◽  
Mingtai Chen ◽  
Changjian Yuan ◽  
...  

Abstract BackgroundCorydalis Rhizoma(CR) showed a high efficacy for coronary heart disease (CHD). However, the interaction between the active ingredients of CR and the targets of CHD has not been unequivocally explained in previous researches. To study the active components and potential targets of Corydalis Rhizoma and to determine the mechanism underlying the exact effect of Corydalis Rhizoma on coronary heart disease, a method of network pharmacology was used.Materials and MethodsThe active components of CR and targets corresponding to each component were scanned out from Traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP), and target genes of CHD were searched on GeneCards database and Online Mendelian Inheritance in Man(OMIM) database. The active components and common targets of CR and CHD were used to build the “CR-CHD” network through Cytoscape (version 3.2.1) software as well as protein-protein interaction(PPI) network on String database. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis was executed by clusterProfiler(version 3.8) and DOSE(version 3.6) package on R platform.Results49 active ingredients and 394 relevant targets of CR and the 7173 CHD-related genes were retrieved. 40 common genes were selected for subsequent analysis. Crucial biological processes and pathways were obtained and analyzed, including DNA-binding transcription activator activity, RNA polymerase II-specific, RNA polymerase II transcription factor binding, kinase regulator activity, ubiquitin-like protein ligase binding, fluid shear stress and atherosclerosis, TNF signaling pathway, apoptosis, MAPK signaling pathway and PI3K-Akt signaling pathway.ConclusionsOverall, CR could alleviate CHD through the mechanisms predicted by network pharmacology, laying the foundation for future development of new drugs from traditional Chinese medicine on CHD.


2021 ◽  
Vol 5 (3) ◽  
Author(s):  
Feifei Lei ◽  
Mingjun Zhao ◽  
Haifang Wang ◽  
Chao Pan ◽  
Xiaoya Shi

Objective: To explore the target and mechanism of Astragalus membranaceus, poria, salvia miltiorrhiza and semen leiocarpa in the treatment of heart failure by network pharmacology. Methods: The active components of traditional Chinese medicine and the target of heart failure were screened by multi-platform, and the standard gene was transformed by Uniprot. CytoCasp 3.6.1 was used to draw the network diagram of traditional Chinese medicine - component - target. Go and KEGG analysis were performed by Metascape. Results: A total of 36 predictive target sites of Radix Astragalus, Fuling poria, Salvia miltiorrhiza and Draba nemorosa were screened for treatment of heart failure, mainly involving nerve and factor pathways: ADRB2, ADRA1B and AChE. Cancer pathway: TP53, TNF; Pathways of inflammation: IL1B, PTSG2, PTSG1; Sex hormone pathway: ESR1, AR, PGR; Others: SCN5A, HIF1A, etc. The results of GO and KEGG enrichment suggested that the treatment of heart failure with the top four drugs involved cancer pathway, calcium signaling pathway, HIF-1 signaling pathway, and involved in blood circulation, cell proliferation and other processes. Conclusion: This study combines the pharmacological studies of Chinese medicine and western medicine to reveal the mechanism of multi-target and multi-channel regulation of body balance in Chinese medicine treatment.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Hongxing Li ◽  
Xinyue Zhang ◽  
Lili Gu ◽  
Ningzi Wu ◽  
Lingxi Zhang ◽  
...  

This study aims to explore the possible homologous mechanism of 7 frequently‐used herbs for heat-clearing and detoxification in traditional Chinese medicine (HDTCM) for treating Alzheimer's disease (AD), one of the most common types of dementia, based on network pharmacology. Herbs that satisfied the criteria of containing chlorogenic acid, relating to AD and aligning with HDTCM, were simultaneously collected to determine whether they have anti-AD effect based on a survey of the literature. Herb-ingredient-target-disease networks were constructed by collecting information from the TCMSP and GeneCards public databases. The common targets of the herbs and AD were identified for conducting a Gene Ontology (GO) analyses and a Reactome pathway enrichment analysis. The results showed that PTGS1, IL-6, CASP3, and VEGFA were the predicted key gene targets. The IL-4 and IL-13 signaling pathway, the ESR-mediated signaling pathway, and the extranuclear estrogen signaling pathway were the significant pathways associated with the 7 herbs. This study revealed that the analogous anti-AD mechanism of the 7 herbs of HDTCM may be associated with anti-inflammation, which is a common effect of the chlorogenic acid and quercetin components.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Wenhao Niu ◽  
Feng Wu ◽  
Haiming Cui ◽  
Wenyue Cao ◽  
YuChieh Chao ◽  
...  

“Three formulas and three medicines,” which include Jinhua Qinggan granule, Lianhua Qingwen capsule/granule, Xuebijing injection, Qingfei Paidu decoction, HuaShiBaiDu formula, and XuanFeiBaiDu granule, have been proven to be effective in curbing coronavirus disease 2019 (COVID-19), according to the State Administration of Traditional Chinese Medicine. The aims of this study were to identify the active components of “Three formulas and three medicines” that can be used to treat COVID-19, determine their mechanism of action via angiotensin-converting enzyme 2 (ACE2) by integrating network pharmacological approaches, and confirm the most effective components for COVID-19 treatment or prevention. We investigated all the compounds present in the aforementioned herbal ingredients. Compounds that could downregulate the transcription factors (TFs) of ACE2 and upregulate miRNAs of ACE2 were screened via a network pharmacology approach. Hepatocyte nuclear factor 4 alpha (HNF4A), peroxisome proliferator-activated receptor gamma (PPARG), hsa-miR-2113, and hsa-miR-421 were found to regulate ACE2. Several compounds, such as quercetin, decreased ACE2 expression by regulating the aforementioned TFs or miRNAs. After comparison with the compounds present in Glycyrrhiza Radix et Rhizoma, quercetin, glabridin, and gallic acid present in the herbal formulas and medicines were found to alter ACE2 expression. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used to search for possible molecular mechanisms of these compounds. In conclusion, traditional Chinese medicine (TCM) plays a pivotal role in the prevention and treatment of COVID-19. Quercetin, glabridin, and gallic acid, the active components of recommended TCM formulas and medicines, can inhibit COVID-19 by downregulating ACE2.


2020 ◽  
Author(s):  
Ying Li ◽  
Guhang Wei ◽  
Zhenkun Zhuang ◽  
Mingtai Chen ◽  
Haidan Lin ◽  
...  

Abstract Background. Corydalis Rhizoma(CR) showed a high efficacy for coronary heart disease (CHD). However, the interaction between the active ingredients of CR and the targets of CHD has not been unequivocally explained in previous researches. To study the active components and potential targets of Corydalis Rhizoma and to determine the mechanism underlying the exact effect of Corydalis Rhizoma on coronary heart disease, a method of network pharmacology was used. Materials and Methods. The active components of CR and targets corresponding to each component were scanned out from Traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP), and target genes of CHD were searched on GeneCards database and Online Mendelian Inheritance in Man(OMIM) database. The active components and common targets of CR and CHD were used to build the “CR-CHD” network through Cytoscape (version 3.2.1) software as well as protein-protein interaction(PPI) network on String database. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis was executed by clusterProfiler(version 3.8) and DOSE(version 3.6) package on R platform. Results. 49 active ingredients and 394 relevant targets of CR and the 7173 CHD-related genes were retrieved. 40 common genes were selected for subsequent analysis. Crucial biological processes and pathways were obtained and analyzed, including DNA-binding transcription activator activity, RNA polymerase II-specific, RNA polymerase II transcription factor binding, kinase regulator activity, ubiquitin-like protein ligase binding, fluid shear stress and atherosclerosis, TNF signaling pathway, apoptosis, MAPK signaling pathway and PI3K-Akt signaling pathway. Conclusions. Overall, CR could alleviate CHD through the mechanisms predicted by network pharmacology, laying the foundation for future development of new drugs from traditional Chinese medicine on CHD.


2020 ◽  
Author(s):  
Li-ying Jia ◽  
Jia Li ◽  
Gui-yun Cao ◽  
Zhao-qing Meng ◽  
Lu Gan ◽  
...  

Abstract Background SheXiang XinTongNing, a commercially available Chinese patent medicine, has been widely used in the treatment of coronary heart disease. However, the mechanisms of SheXiang XinTongNing are still unclear. The aim of this study was to investigate the pharmacological mechanisms of SheXiang XinTongNing against coronary heart disease via network analysis. Method The traditional Chinese medicine system pharmacology analysis platform was used to screen the potential active constituents of the six traditional Chinese medicines in SheXiang XinTongNing, and the potential targets were obtained from PharmMapper. The genome annotation database platform was used to screen the candidate targets related to coronary heart disease. Then the drug-components-targets network and protein interaction network were built by Cytoscape 3.6.0 software. Further, GO bio-functional enrichment analysis and KEGG pathway enrichment analysis were performed through annotation, visualization and integrated discovery database. Results Results showed that the drugs-components-targets network contains 104 targets and 62 key components. The protein interaction network consisted of 107 nodes; key targets included Bcl2l1, IGF1, SRC, CASP3, et al. Functionally, the candidate targets were significantly associated with multiple pathways such as PI3K-Akt signaling pathway, MAPK signaling pathway, Ras signaling pathway, FoxO signaling pathway, Endocrine resistance. Given the above, the pharmacological activities of SheXiang XinTongNing may be predominantly related to several factors such as cell apoptosis, inflammation and angiogenesis. Conclusion XTN can effectively attenuate the symptoms of coronary heart disease through diverse pathways. The research proves that network pharmacology can successfully reveal the mechanisms of traditional Chinese medicine in a holistic view. Our systematic analysis lays a foundation for further studying.


Sign in / Sign up

Export Citation Format

Share Document