Type II Kinase Inhibitors: An Opportunity in Cancer for Rational Design

2013 ◽  
Vol 13 (5) ◽  
pp. 731-747 ◽  
Author(s):  
Javier Blanc ◽  
Raphael Geney ◽  
Christel Menet
Author(s):  
Helen S. Beeston ◽  
Tobias Klein ◽  
Richard A. Norman ◽  
Julie A. Tucker ◽  
Malcolm Anderson ◽  
...  

2012 ◽  
Vol 22 (2) ◽  
pp. 73-74 ◽  
Author(s):  
Alexey A. Zeifman ◽  
Ilya Yu. Titov ◽  
Igor V. Svitanko ◽  
Tatiana V. Rakitina ◽  
Aleksey V. Lipkin ◽  
...  

2010 ◽  
Vol 20 (12) ◽  
pp. 3805-3808 ◽  
Author(s):  
Hana Yu ◽  
Yunkyung Jung ◽  
Hwan Kim ◽  
Junghun Lee ◽  
Chang-Hyun Oh ◽  
...  
Keyword(s):  
Type Ii ◽  

2013 ◽  
Vol 56 (11) ◽  
pp. 4343-4356 ◽  
Author(s):  
Ken-ichi Kusakabe ◽  
Nobuyuki Ide ◽  
Yataro Daigo ◽  
Yuki Tachibana ◽  
Takeshi, Itoh ◽  
...  

2018 ◽  
Vol 19 (8) ◽  
pp. 2380 ◽  
Author(s):  
Michiel Remmerie ◽  
Veerle Janssens

Type II endometrial carcinomas (ECs) are responsible for most endometrial cancer-related deaths due to their aggressive nature, late stage detection and high tolerance for standard therapies. However, there are no targeted therapies for type II ECs, and they are still treated the same way as the clinically indolent and easily treatable type I ECs. Therefore, type II ECs are in need of new treatment options. More recently, molecular analysis of endometrial cancer revealed phosphorylation-dependent oncogenic signalling in the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways to be most frequently altered in type II ECs. Consequently, clinical trials tested pharmacologic kinase inhibitors targeting these pathways, although mostly with rather disappointing results. In this review, we highlight the most common genetic alterations in type II ECs. Additionally, we reason why most clinical trials for ECs using targeted kinase inhibitors had unsatisfying results and what should be changed in future clinical trial setups. Furthermore, we argue that, besides kinases, phosphatases should no longer be ignored in clinical trials, particularly in type II ECs, where the tumour suppressive phosphatase protein phosphatase type 2A (PP2A) is frequently mutated. Lastly, we discuss the therapeutic potential of targeting PP2A for (re)activation, possibly in combination with pharmacologic kinase inhibitors.


mBio ◽  
2018 ◽  
Vol 9 (3) ◽  
Author(s):  
Matthew A. Szaniawski ◽  
Adam M. Spivak ◽  
James E. Cox ◽  
Jonathan L. Catrow ◽  
Timothy Hanley ◽  
...  

ABSTRACTMacrophages are susceptible to human immunodeficiency virus type 1 (HIV-1) infection despite abundant expression of antiviral proteins. Perhaps the most important antiviral protein is the restriction factor sterile alpha motif domain and histidine/aspartic acid domain-containing protein 1 (SAMHD1). We investigated the role of SAMHD1 and its phospho-dependent regulation in the context of HIV-1 infection in primary human monocyte-derived macrophages and the ability of various interferons (IFNs) and pharmacologic agents to modulate SAMHD1. Here we show that stimulation by type I, type II, and to a lesser degree, type III interferons share activation of SAMHD1 via dephosphorylation at threonine-592 as a consequence of signaling. Cyclin-dependent kinase 1 (CDK1), a known effector kinase for SAMHD1, was downregulated at the protein level by all IFN types tested. Pharmacologic inhibition or small interfering RNA (siRNA)-mediated knockdown of CDK1 phenocopied the effects of IFN on SAMHD1. A panel of FDA-approved tyrosine kinase inhibitors potently induced activation of SAMHD1 and subsequent HIV-1 inhibition. The viral restriction imposed via IFNs or dasatinib could be overcome through depletion of SAMHD1, indicating that their effects are exerted primarily through this pathway. Our results demonstrate that SAMHD1 activation, but not transcriptional upregulation or protein induction, is the predominant mechanism of HIV-1 restriction induced by type I, type II, and type III IFN signaling in macrophages. Furthermore, SAMHD1 activation presents a pharmacologically actionable target through which HIV-1 infection can be subverted.IMPORTANCEOur experimental results demonstrate that SAMHD1 dephosphorylation at threonine-592 represents a central mechanism of HIV-1 restriction that is common to the three known families of IFNs. While IFN types I and II were potent inhibitors of HIV-1, type III IFN showed modest to undetectable activity. Regulation of SAMHD1 by IFNs involved changes in phosphorylation status but not in protein levels. Phosphorylation of SAMHD1 in macrophages occurred at least in part via CDK1. Tyrosine kinase inhibitors similarly induced SAMHD1 dephosphorylation, which protects macrophages from HIV-1 in a SAMHD1-dependent manner. SAMHD1 is a critical restriction factor regulating HIV-1 infection of macrophages.


Sign in / Sign up

Export Citation Format

Share Document