Evaluation of New 99mTc(CO)3 + Radiolabeled Glycylglycine In Vivo

2019 ◽  
Vol 19 (11) ◽  
pp. 1382-1387
Author(s):  
Ahmet M. Şenışık ◽  
Çiğdem İçhedef ◽  
Ayfer Y. Kılçar ◽  
Eser Uçar ◽  
Kadir Arı ◽  
...  

Background: Peptide-based agents are used in molecular imaging due to their unique properties, such as rapid clearance from the circulation, high affinity and target selectivity. Many of the radiolabeled peptides have been clinically experienced with diagnostic accuracy. The aim of this study was to investigate in vivo biological behavior of [99mTc(CO)3(H2O)3]+ radiolabeled glycylglycine (GlyGly). Methods: Glycylglycine was radiolabeled with a high radiolabeling yield of 94.69±2%, and quality control of the radiolabeling process was performed by thin layer radiochromatography (TLRC) and High-Performance Liquid Radiochromatography (HPLRC). Lipophilicity study for radiolabeled complex (99mTc(CO)3-Gly-Gly) was carried out using solvent extraction. The in vivo evaluation was performed by both biodistribution and SPECT imaging. Results: The high radiolabelling yield of 99mTc(CO)3-GlyGly was obtained and verified by TLRC and HPLRC as well. According to the in vivo results, SPECT images and biodistribution data are in good accordance. The excretion route from the body was both hepatobiliary and renal. Conclusion: This study shows that 99mTc(CO)3-GlyGly has the potential to be used as a peptide-based imaging agent. Further studies, 99mTc(CO)3-GlyGly can be performed on tumor-bearing animals.

Author(s):  
Pavani C H

Hyperlipidemia is the immediate results of the excessive fat intake in food. This results in the elevated levels of cholesterol and triglycerides in the blood. This leads to heart conditions like CAD, hypertension, congestive heart failure as risk factors which can be lethal. There are many drugs to treat and control the lipids levels in the body. These drugs are either designed to prevent LDL accumulation and VLDL synthesis. Some drugs also lower the elevated levels of saturated lipids in the body. But many drugs are known to cause side effects and adverse effects; therefore, alternatives to the drugs are the subjects for current investigations. Herbs and medicinal plants are used as treatment sources for many years. They have been used in the Indian medical systems like Ayurveda, Siddha etc. As the application of herbs in the treatment is growing, there is an urgent need for the establishment of Pharmacological reasoning and standardization of the activity of the medicinal plants. Chloris paraguaiensis Steud. is Poyaceae member that is called locally as Uppugaddi. Traditionally it is used to treat Rheumatism, Diabetes, fever and diarrhoea. The chemical constituents are known to have anti-oxidant properties and most of the anti-oxidants have anti-hyperlipidemic activity too. Since the plant has abundant flavonoid and phenol content, the current research focusses on the investigation of the anti-hyperlipidemic activity of the plant Chloris extracts. Extracts of Chloris at 200mg/kg showed a comparably similar anti hyperlipidemia activity to that of the standard drug. The extracts showed a dose based increase in the activity at 100 and 200mg/kg body weight.


Author(s):  
Bhavani J ◽  
Sunil Kumar Prajapati ◽  
Ravichandran S

Cancer is assemblage diseases involving abnormal cell growth amid the potential of spread to other parts of the body due to tobacco use are the cause of about of cancer deaths. Another 10% is due to obesity, poor diet & drinking alcohol. In 2012 about 14.1 million new cases of cancer occurred globally. In females, the most common type is breast cancer. Cisplatin also known as cytophosphane is a nitrogen mustard alkylating agent from the oxazophosphinans groups were used to treat cancers & autoimmune disorders. Based on the above reasons I will fix the aim Preparation characterization of Cisplatin- nano particles  &  its anticancer activity. Solid tumor volume examination report showed that the assessment of different day indication 15,20,25 & 30th variations of different groups of tumor volumes were decreased CPG Nanoparticles (100 mg/kg)+ DAL(15th day 4.97±0.24↓), (20th day 0.6±0.13↓), (25th day 1.35±0.30↓) & (30th day 1.89±0.13↓).


2018 ◽  
Vol 30 (23) ◽  
pp. 8587-8596 ◽  
Author(s):  
Alexandra Van Driessche ◽  
Agnese Kocere ◽  
Hannelien Everaert ◽  
Lutz Nuhn ◽  
Simon Van Herck ◽  
...  

1993 ◽  
Vol 264 (3) ◽  
pp. F480-F489 ◽  
Author(s):  
G. Iervasi ◽  
A. Clerico ◽  
S. Berti ◽  
A. Pilo ◽  
F. Vitek ◽  
...  

125I-labeled atrial natriuretic peptide (ANP) was bolus injected into seven healthy human male subjects on an unrestricted diet (sodium intake ranging from 80 to 300 mmol/day). A high-performance liquid chromatographic procedure was used to purify the labeled hormone and the principal labeled metabolites in venous plasma samples collected up to 50 min after injection. The main ANP kinetic parameters were derived from the disappearance curves of the 125I-ANP, which were satisfactorily fitted by a biexponential function in all subjects. Newly produced ANP initially distributes in a large space (plasma-equivalent volume is 12.1 +/- 3.6 l/m2 body surface); the hormone rapidly leaves this sampling space through both degradation and distribution in peripheral spaces, as indicated by the single-pass mean transit time through the sampling space (3.9 +/- 1.2 min). The mean residence time in the body (22.7 +/- 23.1 min) and the plasma-equivalent total distribution volume (30.9 +/- 12.0 l/m2) indicate that ANP is also widely distributed outside the initial space. Metabolic clearance rate (MCR) values were distributed across a wide range (from 740 to 2,581 ml.min-1 x m-2) and were shown to correlate strongly with the daily urinary excretion of sodium. These results indicate that: 1) newly produced ANP is rapidly distributed and degraded, 2) the body pool of the hormone can be considered as a combination of two exchanging spaces, 3) circulating ANP is < or = 1/15 of the body pool, and 4) MCR of ANP is closely related to sodium intake, at least in normal subjects on a free sodium intake diet.


Coatings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 834
Author(s):  
Xi Han ◽  
Ting Zhang ◽  
Mengyang Liu ◽  
Yanzhi Song ◽  
Xinrong Liu ◽  
...  

Poly (ethylene glycol) (PEG) modified nanocarriers are being used widely in the drug delivery system (DDS). However, the “accelerated blood clearance (ABC) phenomenon” was induced upon repeated administration of PEG-modified liposomes, resulting in reduced blood circulation time, and increased accumulation in liver and spleen. To avoid the unexpected phenomenon, polysialic acid (PSA) was selected to modify liposomes. PSA is a natural, highly hydrophilic polysaccharide polymer for which no receptors exists in the body. It is non-immunogenic, biodegradable and endows the conjugated bioactive macromolecule and drugs with increased circulation time in vivo. In the present study, the in vivo evaluation showed that PSA modified liposomes (PSA-Lip) afford extended blood circulation in wistar rats and beagle dogs. Moreover, the ABC phenomenon did not occur and the IgM antibody was not induced after repeated injections of PSA-Lip. These results strongly suggest that PSA modification represents a promising strategy to afford good stealth of the liposomes without evoking the ABC phenomenon.


RSC Advances ◽  
2017 ◽  
Vol 7 (36) ◽  
pp. 22388-22399 ◽  
Author(s):  
Dawei Wang ◽  
Yu Fang ◽  
Hang Wang ◽  
Xingyu Xu ◽  
Jianping Liu ◽  
...  

Compound [18F]-8a exhibited good in vivo biodistribution data in mice bearing S180 tumor. And the microPET imaging study of [18F]-8a in S180 tumor-bearing mice was also preformed, which illustrated that the uptake in S180 tumor at 60 min post-injection of [18F]-8a was obvious.


2021 ◽  
Author(s):  
Farhad Safari ◽  
Shahla Mirzaeei ◽  
Ghobad Mohammadi

Purpose: The present investigation aimed to prepare Vancomycin-loaded nanoparticles (VAN-NPs) using chitosan (CS) and tripolyphosphate (TPP) besides exploring the effects of changing CS/TPP ratio on the physicochemical properties, corneal permeation, and ocular delivery of the prepared NPs. Methods: Different pre-formulations were prepared using the modified ionic gelation process, then were characterized in terms of size distribution. Optimized formulations were furtherly evaluated by some characteristic tools such as Fourier-transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). The in vitro antimicrobial efficacy and drug release amounts along with the Ex-vivo corneal permeation of NPs through the sheep cornea were investigated. Quantification was performed using High-Performance Liquid Chromatography. Results: Spherical and uniformly distributed NPs were developed with a mean particle size varied between 215–290 nm. FTIR spectroscopy confirmed that the CS/TPP cross-linking has taken place without affecting the pharmacologically active moiety of the drug. The obtained zeta potential values were in the range of +34 to +37 mV, which could ensure the stability of formulations. TGA analysis indicated enhanced thermal stability for the encapsulated drug compared to the plain drug. Formulations indicated suitable antimicrobial efficacy while releasing more than 90% of the drug during 24 h. NPs offered a 10-fold enhancement in corneal permeation compared to the drug solution. Conclusions: Although further in vivo evaluation is still required to completely confirm the efficacy of the formulations, the enhanced release and corneal permeation of the drug suggest that the prepared NPs are suitable for ocular delivery of VAN.


Author(s):  
Hulihalli N. KiranKumar ◽  
Heggodu G. RohitKumar ◽  
Ajay S. Khandagale ◽  
Gopal M. Advirao

Background: We previously synthesized two DNA intercalative pyrimido[4’,5’:4,5]thieno(2,3-b) quinolines (PTQ), 9-hydroxy-4-(3-diethylaminopropylamino)pyrimido[4’,5’:4,5]thieno(2,3-b) quinolines (Hydroxy-DPTQ) and 8-methoxy-4-(3-diethylaminopropylamino) pyrimido[4’,5’:4,5]thieno(2,3-b) quinolines (Methoxy-DPTQ), and reported their cytotoxicity against cancer cell lines. Objective: In the present study, we sought to analyze the antitumor activity of Hydroxy-DPTQ and Methoxy-DPTQ on Ehrlich’s ascites carcinoma in vivo models, along with other pharmacological activities and toxicity. Methods: Antitumor activity, In vivo antioxidant measurement, Anti-inflammatory activity Analgesic activity, Hematological study, Biochemical parameters, and Nephroprotective ac-tivity. Results: In this study, both the test molecules studied possess potent in vivo antitumor activity without any hematological, biochemical or nephrotoxicity. Significant tumor regression was observed after treatment with both the test molecules, which is suggested by the decrease in the body weight of tumor bearing mice. Mean survival time of mice with tumor was increased from 16 days to 25 and 29 days after 40 and 80 mg/kg Hydroxy-DPTQ treatment, respectively, with a similar result for Methoxy-DPTQ. A dose dependent increase in lifespan upto 80-85% was also displayed by both Hydroxy-DPTQ and Methoxy-DPTQ. Reduction in the tumor volume of mice, upon treatment with molecules also confirmed their antitumor ac-tivity. These molecules also exhibited pharmacological activities such as antioxidant, anti-inflammatory and analgesic activities. Administration of Hydroxy-DPTQ and Methoxy-DPTQ not only reduced the level of lipid peroxidation in tumor bearing mice, but also re-stored the superoxide dismutase, glutathione and catalase levels to normal, substantiating the antioxidant property. Also, treatment of Hydroxy-DPTQ and Methoxy-DPTQ inhibited the pain to approximately 60-80% and 19-33%, respectively. Further, the treatment with Hy-droxy-DPTQ and Methoxy-DPTQ reversed the abnormality in the RBC, WBC and haemo-globin levels, and gentamicin induced nephrotoxicity. Conclusion : Hydroxy-DPTQ and Methoxy-DPTQ are good antitumor molecules with pharmacological properties.


1994 ◽  
Vol 17 (2) ◽  
pp. 88-94 ◽  
Author(s):  
F. Moussy ◽  
D.J. Harrison ◽  
R.V. Rajotte

We have developed an implantable glucose sensor based on a new tri-layer membrane configuration. The needle-type sensor integrates a Pt working electrode and a Ag/AgCI reference electrode. Its size is equivalent to a 25 gauge needle (0.5 mm in diamater). Poly (o-phenylenediamine) was used as an inner coating to reduce interference by small compounds present in the body fluids, and the perfluorinated ionomer, Nation as a biocompatible, protective, outer coating. Glucose oxidase trapped in an albumin/glutaraldehyde matrix was sandwiched between these coatings. In vitro tests in buffer showed the sensors had a good selectively, a sensitivity of about 25 nA/mM, and a 90% response time of 33 s. Stabilization of the current following polarization required 10 to 30 min in vitro and 30 to 40 in vivo. Although these sensors remained stable for many weeks in saline solution, their implantation in animals resulted in the degradation of the protective Nation outer coating, which in turn, led to the failure of the incorporated reference electrode. We demonstrated that if unprotected, the AgCI layer of the reference electrode rapidly dissolves in the biological environment. However, we later showed that in vivo degradation of Nation can be prevented by heat curing. When heat cured sensors were subcutaneously implanted in dogs, the sensors' signal closely followed the plasma glucose level during glucose tolerance tests. The response of the sensors implanted in dogs was retained for 10 days.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaohong Hu ◽  
Ziyu Gao ◽  
Huaping Tan ◽  
Long Zhang

In cancer therapy, combined utilization of anticancer drug and photosensitizer attracts increasing interest due to enhanced curative effects and reduced side effects. Since the drug delivery system is an effective method to enhance curative effects, drug carriers for codelivery of the two abovementioned molecules are essentially important for chemophotodynamic therapy. Based on the foundation, a nanocarrier with pH-responsive and targeted properties was designed, prepared, and researched in the work. A pH-sensitive nanoparticle was fabricated by acetylated β-cyclodextrin (Ac-β-CD) using oil-in-water (O/W) emulsion technique. During the fabrication processing, a functional emulgator (gelation-folic acid ester (G-FA)) with a biorecognition domain was absorbed onto the surface of the nanoparticle, which endowed a nanoparticle-targeted property. The nanoparticle exhibited a coarse surface, pH-responsive property, and similar fluorescence characteristic as G-FA. The cell endocytosis profile revealed that equilibrium endocytosis could be reached after being cocultured with 1.0 mg/mL nanoparticle for 8 h. Furthermore, camptothecin (CPT) as an anticancer drug and phthalocyanine (PcZn) as a photosensitizer were encapsulated into the nanoparticle during the fabrication processing. The nanoparticle enhanced the fluorescence effects of PcZn on water solution, and CPT encapsulation proportion was slightly influenced by initial CPT concentration. The pH value influenced the PcZn fluorescence behavior and CPT release behavior of the nanoparticle. In vitro cytoviability evaluation confirmed the therapeutic effect of the nanocarrier on HEP2 cells. Finally, the results of preliminary in vivo evaluation revealed that the reported nanocarrier in the research could inhibit cancer development with little effects on the body weight of mice.


Sign in / Sign up

Export Citation Format

Share Document