scholarly journals Development of Chitosan–Tripolyphosphate Nanoparticles as Glycopeptide Antibiotic Reservoirs and Ex vivo Evaluation for Their Potential to Enhance the Corneal Permeation in Ocular Drug Delivery

2021 ◽  
Author(s):  
Farhad Safari ◽  
Shahla Mirzaeei ◽  
Ghobad Mohammadi

Purpose: The present investigation aimed to prepare Vancomycin-loaded nanoparticles (VAN-NPs) using chitosan (CS) and tripolyphosphate (TPP) besides exploring the effects of changing CS/TPP ratio on the physicochemical properties, corneal permeation, and ocular delivery of the prepared NPs. Methods: Different pre-formulations were prepared using the modified ionic gelation process, then were characterized in terms of size distribution. Optimized formulations were furtherly evaluated by some characteristic tools such as Fourier-transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). The in vitro antimicrobial efficacy and drug release amounts along with the Ex-vivo corneal permeation of NPs through the sheep cornea were investigated. Quantification was performed using High-Performance Liquid Chromatography. Results: Spherical and uniformly distributed NPs were developed with a mean particle size varied between 215–290 nm. FTIR spectroscopy confirmed that the CS/TPP cross-linking has taken place without affecting the pharmacologically active moiety of the drug. The obtained zeta potential values were in the range of +34 to +37 mV, which could ensure the stability of formulations. TGA analysis indicated enhanced thermal stability for the encapsulated drug compared to the plain drug. Formulations indicated suitable antimicrobial efficacy while releasing more than 90% of the drug during 24 h. NPs offered a 10-fold enhancement in corneal permeation compared to the drug solution. Conclusions: Although further in vivo evaluation is still required to completely confirm the efficacy of the formulations, the enhanced release and corneal permeation of the drug suggest that the prepared NPs are suitable for ocular delivery of VAN.

2021 ◽  
pp. 088391152199784
Author(s):  
Loveleen Kaur ◽  
Ajay Kumar Thakur ◽  
Pradeep Kumar ◽  
Inderbir Singh

Present study was aimed to synthesize and characterize Chitosan-Catechol conjugates and to design and develop mucoadhesive pellets loaded with lafutidine. SEM images indicated the presence of fibrous structures responsible for enhanced mucoadhesive potential of Chitosan-Catechol conjugates. Thermodynamic stability and amorphous nature of conjugates was confirmed by DSC and XRD studies respectively. Rheological studies were used to evaluate polymer mucin interactions wherein strong interactions between Chitosan-Catechol conjugate and mucin was observed in comparison to pristine chitosan and mucin. The mucoadhesion potential of Chitosan-Catechol (Cht-C) versus Chitosan (Cht) was assessed in silico using molecular mechanics simulations and the results obtained were compared with the in vitro and ex vivo results. Cht-C/mucin demonstrated much higher energy stabilization (∆E ≈ −65 kcal/mol) as compared to Cht/mucin molecular complex. Lafutidine-loaded pellets were prepared from Chitosan (LPC) and Chitosan-Catechol conjugates (LPCC) and were evaluated for various physical properties viz. flow, circularity, roundness, friability, drug content, particle size and percent mucoadhesion. In vitro drug release studies on LPC and LPCC pellets were performed for computing t50%, t90% and mean dissolution time. The values of release exponent from Korsmeyer-Peppas model was reported to be 0.443 and 0.759 for LPC and LPCC pellets suggesting Fickian and non-Fickian mechanism representing drug release, respectively. In vivo results depicted significant controlled release and enhanced residence of the drug after being released from the chitosan-catechol coated pellets. Chitosan-Catechol conjugates were found to be a promising biooadhesive polymer for the development of various mucoadhesive formulations.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 969
Author(s):  
Xingyi Jiang ◽  
Qinchun Rao

Fish allergy is a life-long food allergy whose prevalence is affected by many demographic factors. Currently, there is no cure for fish allergy, which can only be managed by strict avoidance of fish in the diet. According to the WHO/IUIS Allergen Nomenclature Sub-Committee, 12 fish proteins are recognized as allergens. Different processing (thermal and non-thermal) techniques are applied to fish and fishery products to reduce microorganisms, extend shelf life, and alter organoleptic/nutritional properties. In this concise review, the development of a consistent terminology for studying food protein immunogenicity, antigenicity, and allergenicity is proposed. It also summarizes that food processing may lead to a decrease, no change, or even increase in fish antigenicity and allergenicity due to the change of protein solubility, protein denaturation, and the modification of linear or conformational epitopes. Recent studies investigated the effect of processing on fish antigenicity/allergenicity and were mainly conducted on commonly consumed fish species and major fish allergens using in vitro methods. Future research areas such as novel fish species/allergens and ex vivo/in vivo evaluation methods would convey a comprehensive view of the relationship between processing and fish allergy.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1483
Author(s):  
Emily A. Bates ◽  
John R. Counsell ◽  
Sophie Alizert ◽  
Alexander T. Baker ◽  
Natalie Suff ◽  
...  

The human adenovirus phylogenetic tree is split across seven species (A–G). Species D adenoviruses offer potential advantages for gene therapy applications, with low rates of pre-existing immunity detected across screened populations. However, many aspects of the basic virology of species D—such as their cellular tropism, receptor usage, and in vivo biodistribution profile—remain unknown. Here, we have characterized human adenovirus type 49 (HAdV-D49)—a relatively understudied species D member. We report that HAdV-D49 does not appear to use a single pathway to gain cell entry, but appears able to interact with various surface molecules for entry. As such, HAdV-D49 can transduce a broad range of cell types in vitro, with variable engagement of blood coagulation FX. Interestingly, when comparing in vivo biodistribution to adenovirus type 5, HAdV-D49 vectors show reduced liver targeting, whilst maintaining transduction of lung and spleen. Overall, this presents HAdV-D49 as a robust viral vector platform for ex vivo manipulation of human cells, and for in vivo applications where the therapeutic goal is to target the lung or gain access to immune cells in the spleen, whilst avoiding liver interactions, such as intravascular vaccine applications.


2021 ◽  
Author(s):  
Yipu Wang ◽  
Dong Mei ◽  
Xinyi Zhang ◽  
Da-Hui Qu ◽  
Ju Mei ◽  
...  

With increase of social aging, Alzheimer's disease (AD) has been one of the serious diseases threatening human health. The occurrence of A<i>β </i>fibrils<i> </i>or plaques is recognized as the hallmark of AD.<i> </i>Currently, optical imaging has stood out to be a promising technique for the imaging of A<i>β</i> fibrils/plaques and the diagnosis of AD. However, restricted by their poor blood-brain barrier (BBB) penetrability, short-wavelength excitation and emission, and aggregation-caused quenching (ACQ) effect, the clinically used gold-standard optical probes such as <a>thioflavin</a> T (ThT) and thioflavin S (ThS), are not effective enough in the early diagnosis of AD <i>in vivo</i>. Herein, we put forward an “all-in-one” design principle and demonstrate its feasibility in developing high-performance fluorescent probes which are specific to A<i>β</i> fibrils/plaques and promising for super-early <i>in</i>-<i>vivo</i> diagnosis of AD. As a proof of concept, a simple rod-like amphiphilic NIR fluorescent AIEgen, i.e., AIE-CNPy-AD, is developed by taking the specificity, BBB penetration ability, deep-tissue penetration capacity, high signal-to-noise ratio (SNR) into consideration. AIE-CNPy-AD is constituted by connecting the electron-donating and accepting moieties through single bonds and tagging with a propanesulfonate tail, giving rise to the NIR fluorescence, aggregation-induced emission (AIE) effect, amphiphilicity, and rod-like structure, which in turn result in high binding-affinity and excellent specificity to A<i>β</i> fibrils/plaques, satisfactory ability to penetrate BBB and deep tissues, ultrahigh SNR and sensitivity, and high-fidelity imaging capability. <i>In-vitro, ex-vivo,</i> and <i>in-vivo</i> <a>identifying of A<i>β</i> fibrils/plaques</a> in different strains of mice indicate that AIE-CNPy-AD holds the universality to the detection of A<i>β</i> fibrils/plaques. It is noteworthy that AIE-CNPy-AD is even able to trace the small and sparsely distributed A<i>β</i> fibrils/plaques in very young AD model mice such as 4-month-old APP/PS1 mice which are reported to be the youngest mice to have A<i>β</i> deposits in brains, suggesting its great potential in diagnosis and intervention of AD at a super-early stage.


2019 ◽  
Vol 36 (7) ◽  
pp. 603-621 ◽  
Author(s):  
Aashu Gupta ◽  
Kritika Nayak ◽  
Manju Misra
Keyword(s):  
Ex Vivo ◽  

2020 ◽  
Vol 46 (12) ◽  
pp. 1960-1970
Author(s):  
Mengshuang Li ◽  
Ling Zhang ◽  
Rong Li ◽  
Meixing Yan

Pharmaceutics ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 48 ◽  
Author(s):  
Jacob Rune Jørgensen ◽  
Feiyang Yu ◽  
Ramakrishnan Venkatasubramanian ◽  
Line Hagner Nielsen ◽  
Hanne Mørck Nielsen ◽  
...  

Enhancing the oral bioavailability of peptides has received a lot of attention for decades but remains challenging, partly due to low intestinal membrane permeability. Combining a permeation enhancer (PE) with unidirectionally releasing microcontainers (MCs) has previously been shown to increase insulin permeation across Caco-2 cell monolayers. In the present work, this setup was further employed to compare three common PEs—sodium caprate (C10), sodium dodecyl sulfate (SDS), and lauroyl carnitine. The concept was also studied using porcine intestinal tissue with the inclusion of 70 kDa fluorescein isothiocyanate-dextran (FD70) as a pathogen marker. Moreover, a combined proteolysis and Caco-2 cell permeation setup was developed to investigate the effect of soybean trypsin inhibitor (STI) in the MCs. Lastly, in vivo performance of the MCs was tested in an oral gavage study in rats by monitoring blood glucose and insulin absorption. SDS proved to be the most potent PE without increasing the ex vivo uptake of FD70, while the implementation of STI further improved insulin permeation in the combined proteolysis Caco-2 cell setup. However, no insulin absorption in rats was observed upon oral gavage of MCs loaded with insulin, PE and STI. Post-mortem microscopic examination of their gastrointestinal tract indicated lack of intestinal retention and optimal orientation by the MCs, possibly precluding the potential advantage of unidirectional release.


Sign in / Sign up

Export Citation Format

Share Document