Ruxolitinib Regulates the Autophagy Machinery in Multiple Myeloma Cells

2020 ◽  
Vol 20 (18) ◽  
pp. 2316-2323 ◽  
Author(s):  
Alican Kusoglu ◽  
Bakiye G. Bagca ◽  
Neslihan P.O. Ay ◽  
Guray Saydam ◽  
Cigir B. Avci

Background: Ruxolitinib is a selective JAK1/2 inhibitor approved by the FDA for myelofibrosis in 2014 and nowadays, comprehensive investigations on the potential of the agent as a targeted therapy for haematological malignancies are on the rise. In multiple myeloma which is a cancer of plasma cells, the Interleukin- 6/JAK/STAT pathway is emerging as a therapeutic target since the overactivation of the pathway is associated with poor prognosis. Objective: In this study, our purpose was to discover the potential anticancer effects of ruxolitinib in ARH-77 multiple myeloma cell line compared to NCI-BL 2171 human healthy B lymphocyte cell line. Methods: Cytotoxic effects of ruxolitinib in ARH-77 and NCI-BL 2171 cells were determined via WST-1 assay. The autophagy mechanism induced by ruxolitinib measured by detecting autophagosome formation was investigated. Apoptotic effects of ruxolitinib were analyzed with Annexin V-FITC Detection Kit and flow cytometry. We performed RT-qPCR to demonstrate the expression changes of the genes in the IL-6/JAK/STAT pathway in ARH-77 and NCI-BL 2171 cells treated with ruxolitinib. Results: We identified the IC50 values of ruxolitinib for ARH-77 and NCI-BL 2171 as 20.03 and 33.9μM at the 72nd hour, respectively. We showed that ruxolitinib induced autophagosome accumulation by 3.45 and 1.70 folds in ARH-77 and NCI-BL 2171 cells compared to the control group, respectively. Treatment with ruxolitinib decreased the expressions of IL-6, IL-18, JAK2, TYK2, and AKT genes, which play significant roles in MM pathogenesis. Conclusion: All in all, ruxolitinib is a promising agent for the regulation of the IL-6/JAK/STAT pathway and interferes with the autophagy mechanism in MM.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5121-5121
Author(s):  
Monika Podhorecka ◽  
Piotr Klimek ◽  
Norbert Grzasko ◽  
Anna Dmoszynska

Abstract Multiple myeloma is characterized by an accumulation of plasma cells in the bone marrow. Despite many therapeutic regimens introduced recently, the prognosis for patients suffering from treatment-resistant or relapsing multiple myeloma is still very poor. Thus, there is an urgent medical need for novel innovative drugs. Thalidomide is successfully used in myeloma patients being reported to induce apoptosis or G1 growth arrest of plasma cells, regulate microvessel density and cytokine secretion. Statins, largely used for the treatment of hypercholesterolemia, seem to be promising drug in multiple myeloma also. High dose of lovastatin has been shown to have antiproliferative effect by inhibition of malignant cell proliferation and inducing programmed cell death. The aim of this study was the assessment of multiple myeloma cells apoptosis induced by mixture of lovastatin and thalidomide in short-term cell cultures. We analyzed plasmocytes of bone marrow samples obtained from 10 patients with treatment-resistant or relapsing multiple myeloma. To assess apoptosis we used Annexin V and propidium iodide binding. We also examined the regulation of BCL-2 and BAX protein expression in the population of CD138+ plasmocytes. The cells were analyzed with use of flow cytometry technique. The experiments were done before and after 72 hours of cell culture. We observed an increase of apoptotic cell number in all cultures supplemented with analyzed drugs in comparison to 0 h culture and to 72 h control. The percentage of Annexin V positive cells in culture with lovastatin and thalidomide mixture was significantly higher in comparison to culture with lovastatin or thalidomide alone (the mean percentages were 33.40 versus 27.04 and 26.49, respectively, p<0.05). The BCL-2/BAX ratio was lower in cell cultures supplemented with mixture of lovastatin and thalidomide (mean ratio 0.95) in comparison to cultures supplemented with lovastatin or thalidomide alone (mean ratio 1.25 and 1.17, p=0.06 and 0.05, respectively) indicating the tendency to apoptosis induction in analyzed cells. Basing on these results we can conclude that lovastatin and thalidomide may have an synergic effect on the rate of multiple myeloma cell apoptosis and may act together on BCL-2 and BAX regulation. Thus, further research should establish both the precise mechanism of this synergic action of statins and thalidomide and the new therapeutic option for myeloma patients.


Blood ◽  
1992 ◽  
Vol 79 (2) ◽  
pp. 495-502 ◽  
Author(s):  
M Pettersson ◽  
H Jernberg-Wiklund ◽  
LG Larsson ◽  
C Sundstrom ◽  
I Givol ◽  
...  

Abstract The bcl-2 gene, encoding a mitochondrial membrane protein suggested to play an important role in cell survival, is translocated into the Ig loci in about 80% of human follicular lymphomas, which results in a high level of expression. This report shows that bcl-2 was expressed in eight of eight human multiple myeloma cell lines and in normal lymph node and bone marrow plasma cells. In the majority of the myeloma lines, the level of expression was comparable with that observed in Karpas 422, a follicular lymphoma cell line carrying a 14;18 translocation of the bcl-2 gene. DNA rearrangements of the bcl-2 locus were evident in only one of the myeloma cell lines, U-266–1970. In this cell line, which exhibited the highest bcl-2 expression, a fourfold increased copy number of the bcl-2 gene was estimated by Southern analysis. This amplification was lost in cells of later passages (U-266– 1984), suggesting that bcl-2 might possibly have played a role in the tumor development in vivo. Our results are in contrast to previous observations in murine plasmacytoma, in which bcl-2 was shown to be silent. The results also contradict the published observation that bcl- 2 is not expressed at terminal stages of B-cell differentiation. It is at present unclear whether the high expression of bcl-2 in human myeloma is the result of a deregulated expression associated with the malignant phenotype or a mere reflection of the bcl-2 expression typical of normal plasma cells.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4287-4287
Author(s):  
Brian T Gaudette ◽  
Kasyapa S. Chitta ◽  
Stephanie Poulain ◽  
Kelvin P Lee ◽  
Asher Chanan-Khan ◽  
...  

Abstract Waldenström Macroglobulinemia (WM) is a disorder of lymphoplasmacytoid cells that inhabit lymph nodes and the bone marrow. WM cells are characterized by secretion of monoclonal pentameric IgM. These cells are CD19+, CD20+, CD22+, CD38+, CD138+/- and phenotypically resemble IgM plasmablasts or plasma cells. In addition, 91% of WM cases carry an activating mutation of MyD88 (L265P). Mature resting B cells can be driven to differentiate to IgM secreting plasmablasts and plasma cells with similar phenotypes using the TLR4 ligand lipopolysaccharide (LPS). We have demonstrated that LPS (+ cytokine)-differentiated cells become Bcl-xL dependent during this process, rendering them sensitive to the Bcl-xL/Bcl-2 inhibitor ABT-737. For this reason, we hypothesized that activation of MyD88 in WM cells could drive Bcl-xL dependence in a similar manner conferring ABT-737 sensitivity. We treated three WM cell lines, BCWM.1, MWCL-1 and RPCI-WM1 which all harbor the MyD88 (L265P) mutation with ABT-737. We found varying levels of resistance to ABT-737 with an IC50 > 2 μM for all three lines as compared with the ABT-737 sensitive multiple myeloma cell line MM.1s which has an IC50 of 0.4 μM. The RPCI-WM1 cell line was the most insensitive to ABT-737-induced apoptosis with no apoptosis above baseline up to 1.6 μM of drug. Since the WM cell lines were not sensitive to direct inhibition of intrinsic survival regulators, we then examined the sensitivity of these cell lines to other activators of the intrinsic apoptosis pathway. Two of the three cell lines were moderately sensitive to bortezomib with IC50 ≈ 5 nM as compared with the sensitive multiple myeloma cell line MM.1s with an IC50 of 2 nM. The RPCI-WM1 cell line was insensitive to bortezomib with no apoptosis above baseline up to 20 nM bortezomib. Similarly, we found that two of the cell lines were moderately sensitive to arsenic trioxide with an IC50 ≈ 6 μM as compared with the multiple myeloma cell line MM1.s (IC50 ≈ 4 μM). The RPCI-WM1 cell line was insensitive to ATO as well with an IC50 > 20 μM. Given the lack of sensitivity of the three WM cell lines we tested to Bcl-xL/Bcl-2 inhibition with ABT-737 treatment, and that RPCI-WM1 appears insensitive to multiple inducers of intrinsic apoptosis, we examined the expression levels of Bcl-2 family members in these cells. Both BCWM.1 cells and MWCL-1 cells expressed Bim mRNA at very low levels with MWCL-1 expressing no detectable Bim at the protein level. Surprisingly, more moderate levels of Bim were detected in RPCI-WM1 cells. These findings were confirmed at the mRNA level by qRT-PCR. Bcl-xL and Mcl-1 were detectable in all three lines at moderate levels while Bcl-2 which was only expressed at significant levels in MWCL-1 cells and undetectable in BCWM.1 cells. We examined the expression levels of the Bax and Bak in these cells and remarkably there was no detectable Bax and very small amounts of Bak protein in RPCI-WM1 cells. Consistent with a defect in gene expression, Bax mRNA was also low in RPCI-WM1. This was not due to copy number variation, as determined by array-CGH in both the initial patient isolate and the established cell line. Additionally, no loss of Bax, Bak or Bim (Bcl2l11) was observed in SNP array analysis of 46 patients with WM. Interestingly, Bak mRNA levels in RPCI-WM1 were similar to the other WM lines, suggesting a defect in translation or post-translational regulation is responsible for the low protein expression. These results lead us to conclude that these WM cell lines are not sensitive to Bcl-xL/ Bcl-2 inhibition despite activation of MyD88. We have further shown that there are multiple and distinct differences in Bcl-2 family protein expression that lead to this insensitivity. While low levels of Bim combined with expression of Mcl-1 confer resistance to ABT-737 in MWCL-1 and BCWM.1, the lack of Bax and Bak confers resistance to intrinsic apoptotic stimuli in general in RPCI-WM1. Moreover, the loss of Bax and Bak protein expression occur through distinct mechanisms. These WM cell lines demonstrate that sensitivity to agents that kill through the intrinsic apoptotic pathway may vary within a disease that is characterized by a single activating mutation and suggests that additional heterogeneous events regulate the expression of Bcl-2 family proteins in WM. Disclosures: Leleu: CELGENE: Honoraria; JANSSEN: Honoraria. Lonial:Millennium: Consultancy; Celgene: Consultancy; Novartis: Consultancy; BMS: Consultancy; Sanofi: Consultancy; Onyx: Consultancy. Boise:Onyx Pharmaceuticals: Consultancy.


Blood ◽  
1992 ◽  
Vol 79 (2) ◽  
pp. 495-502 ◽  
Author(s):  
M Pettersson ◽  
H Jernberg-Wiklund ◽  
LG Larsson ◽  
C Sundstrom ◽  
I Givol ◽  
...  

The bcl-2 gene, encoding a mitochondrial membrane protein suggested to play an important role in cell survival, is translocated into the Ig loci in about 80% of human follicular lymphomas, which results in a high level of expression. This report shows that bcl-2 was expressed in eight of eight human multiple myeloma cell lines and in normal lymph node and bone marrow plasma cells. In the majority of the myeloma lines, the level of expression was comparable with that observed in Karpas 422, a follicular lymphoma cell line carrying a 14;18 translocation of the bcl-2 gene. DNA rearrangements of the bcl-2 locus were evident in only one of the myeloma cell lines, U-266–1970. In this cell line, which exhibited the highest bcl-2 expression, a fourfold increased copy number of the bcl-2 gene was estimated by Southern analysis. This amplification was lost in cells of later passages (U-266– 1984), suggesting that bcl-2 might possibly have played a role in the tumor development in vivo. Our results are in contrast to previous observations in murine plasmacytoma, in which bcl-2 was shown to be silent. The results also contradict the published observation that bcl- 2 is not expressed at terminal stages of B-cell differentiation. It is at present unclear whether the high expression of bcl-2 in human myeloma is the result of a deregulated expression associated with the malignant phenotype or a mere reflection of the bcl-2 expression typical of normal plasma cells.


2009 ◽  
Vol 89 (4) ◽  
pp. 399-404 ◽  
Author(s):  
Hui Xiao ◽  
Qi Xiao ◽  
Kejian Zhang ◽  
Xuelan Zuo ◽  
Umid Kumar Shrestha

2013 ◽  
Vol 53 (2) ◽  
pp. 154-167 ◽  
Author(s):  
Donata Verdelli ◽  
Lucia Nobili ◽  
Katia Todoerti ◽  
Laura Mosca ◽  
Sonia Fabris ◽  
...  

Gene Reports ◽  
2020 ◽  
Vol 20 ◽  
pp. 100655
Author(s):  
Hussein Anani ◽  
Iman Baluchi ◽  
Alireza Farsinejad ◽  
Ahmad Fatemi ◽  
Roohollah Mirzaee Khalilabadi

Sign in / Sign up

Export Citation Format

Share Document