Lovastatin and Thalidomide Have an Synergic Effect on the Rate of Multiple Myeloma Cell Apoptosis in Short Term Cell Cultures.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5121-5121
Author(s):  
Monika Podhorecka ◽  
Piotr Klimek ◽  
Norbert Grzasko ◽  
Anna Dmoszynska

Abstract Multiple myeloma is characterized by an accumulation of plasma cells in the bone marrow. Despite many therapeutic regimens introduced recently, the prognosis for patients suffering from treatment-resistant or relapsing multiple myeloma is still very poor. Thus, there is an urgent medical need for novel innovative drugs. Thalidomide is successfully used in myeloma patients being reported to induce apoptosis or G1 growth arrest of plasma cells, regulate microvessel density and cytokine secretion. Statins, largely used for the treatment of hypercholesterolemia, seem to be promising drug in multiple myeloma also. High dose of lovastatin has been shown to have antiproliferative effect by inhibition of malignant cell proliferation and inducing programmed cell death. The aim of this study was the assessment of multiple myeloma cells apoptosis induced by mixture of lovastatin and thalidomide in short-term cell cultures. We analyzed plasmocytes of bone marrow samples obtained from 10 patients with treatment-resistant or relapsing multiple myeloma. To assess apoptosis we used Annexin V and propidium iodide binding. We also examined the regulation of BCL-2 and BAX protein expression in the population of CD138+ plasmocytes. The cells were analyzed with use of flow cytometry technique. The experiments were done before and after 72 hours of cell culture. We observed an increase of apoptotic cell number in all cultures supplemented with analyzed drugs in comparison to 0 h culture and to 72 h control. The percentage of Annexin V positive cells in culture with lovastatin and thalidomide mixture was significantly higher in comparison to culture with lovastatin or thalidomide alone (the mean percentages were 33.40 versus 27.04 and 26.49, respectively, p<0.05). The BCL-2/BAX ratio was lower in cell cultures supplemented with mixture of lovastatin and thalidomide (mean ratio 0.95) in comparison to cultures supplemented with lovastatin or thalidomide alone (mean ratio 1.25 and 1.17, p=0.06 and 0.05, respectively) indicating the tendency to apoptosis induction in analyzed cells. Basing on these results we can conclude that lovastatin and thalidomide may have an synergic effect on the rate of multiple myeloma cell apoptosis and may act together on BCL-2 and BAX regulation. Thus, further research should establish both the precise mechanism of this synergic action of statins and thalidomide and the new therapeutic option for myeloma patients.

2020 ◽  
Vol 20 (18) ◽  
pp. 2316-2323 ◽  
Author(s):  
Alican Kusoglu ◽  
Bakiye G. Bagca ◽  
Neslihan P.O. Ay ◽  
Guray Saydam ◽  
Cigir B. Avci

Background: Ruxolitinib is a selective JAK1/2 inhibitor approved by the FDA for myelofibrosis in 2014 and nowadays, comprehensive investigations on the potential of the agent as a targeted therapy for haematological malignancies are on the rise. In multiple myeloma which is a cancer of plasma cells, the Interleukin- 6/JAK/STAT pathway is emerging as a therapeutic target since the overactivation of the pathway is associated with poor prognosis. Objective: In this study, our purpose was to discover the potential anticancer effects of ruxolitinib in ARH-77 multiple myeloma cell line compared to NCI-BL 2171 human healthy B lymphocyte cell line. Methods: Cytotoxic effects of ruxolitinib in ARH-77 and NCI-BL 2171 cells were determined via WST-1 assay. The autophagy mechanism induced by ruxolitinib measured by detecting autophagosome formation was investigated. Apoptotic effects of ruxolitinib were analyzed with Annexin V-FITC Detection Kit and flow cytometry. We performed RT-qPCR to demonstrate the expression changes of the genes in the IL-6/JAK/STAT pathway in ARH-77 and NCI-BL 2171 cells treated with ruxolitinib. Results: We identified the IC50 values of ruxolitinib for ARH-77 and NCI-BL 2171 as 20.03 and 33.9μM at the 72nd hour, respectively. We showed that ruxolitinib induced autophagosome accumulation by 3.45 and 1.70 folds in ARH-77 and NCI-BL 2171 cells compared to the control group, respectively. Treatment with ruxolitinib decreased the expressions of IL-6, IL-18, JAK2, TYK2, and AKT genes, which play significant roles in MM pathogenesis. Conclusion: All in all, ruxolitinib is a promising agent for the regulation of the IL-6/JAK/STAT pathway and interferes with the autophagy mechanism in MM.


Blood ◽  
2007 ◽  
Vol 109 (11) ◽  
pp. 5002-5010 ◽  
Author(s):  
Nizar J. Bahlis ◽  
Anne M. King ◽  
Despina Kolonias ◽  
Louise M. Carlson ◽  
Hong Yu Liu ◽  
...  

Abstract Although interactions with bone marrow stromal cells are essential for multiple myeloma (MM) cell survival, the specific molecular and cellular elements involved are largely unknown, due in large part to the complexity of the bone marrow microenvironment itself. The T-cell costimulatory receptor CD28 is also expressed on normal and malignant plasma cells, and CD28 expression in MM correlates significantly with poor prognosis and disease progression. In contrast to T cells, activation and function of CD28 in myeloma cells is largely undefined. We have found that direct activation of myeloma cell CD28 by anti-CD28 mAb alone induces activation of PI3K and NFκB, suppresses MM cell proliferation, and protects against serum starvation and dexamethasone (dex)–induced cell death. Coculture with dendritic cells (DCs) expressing the CD28 ligands CD80 and CD86 also elicits CD28-mediated effects on MM survival and proliferation, and DCs appear to preferentially localize within myeloma infiltrates in primary patient samples. Our findings suggest a previously undescribed myeloma/DC cell-cell interaction involving CD28 that may play an important role in myeloma cell survival within the bone marrow stroma. These data also point to CD28 as a potential therapeutic target in the treatment of MM.


Blood ◽  
1948 ◽  
Vol 3 (9) ◽  
pp. 987-1018 ◽  
Author(s):  
EDWIN D. BAYRD

Abstract Generalizing, it can be said that the pathologic cells seen in smears of the bone marrow in multiple myeloma resemble the plasma cell and vary from the very anaplastic and immature cell to the well-differentiated and almost characteristic plasma cell. The feature which the "myeloma" cell shares with the plasma cell is the abundant, granular, basophilic cytoplasm which tends to be fragile and undergo the same degenerative changes in each; namely, the formation of Russell bodies and vacuolization. Fairly frequently a perinuclear clear area or Hof is present and the nucleus tends to be eccentrically placed. Cytoplasmic extensions or pseudopodia may also be seen in either case, but they occur more often and more dramatically in instances of multiple myeloma. Multinucleated cells are commonly seen. In addition, myeloma-plasma cells will often have a large clear nucleolus and a leptochromatic nucleus and will exhibit a tendency to the formation of isolated areas of condensed chromatin. Cytoplasmic extrusions, free cytoplasmic bodies, occasionally complete with Russell bodies and vacuoles are almost universally present. All cases were of the plasma cell type; there was no exception. In these cases, the myeloma-plasma cell constituted from 2.5 to 96 per cent of the leukocytic elements present. The opinion was expressed that all so-called types of multiple myeloma are merely variations in differentiation of this same cell. It was noted that anaplasia, hypernucleation and lack of plasma cell predominance in certain cases were diagnostic pitfalls. Additional evidence was adduced to confirm the reticulo-endothelial origin of the myeloma-plasma cell. It was further observed that certain prognostically valuable information could be gleaned from a careful review of the cytologic characteristics in these cases.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4306-4306
Author(s):  
Karène Mahtouk ◽  
Dirk Hose ◽  
Thierry Reme ◽  
John De Vos ◽  
Michel Jourdan ◽  
...  

Abstract Multiple myeloma (MM) is characterized by the accumulation of clonal malignant plasma cells in the bone marrow. One of the hallmarks of plasma cells is the expression of the heparan-sulfate proteoglycan syndecan-1. In epithelial cells, syndecan-1 plays a major role as a coreceptor for heparin-binding growth factors and chemokines. This stresses that heparin-binding growth factors may play a major role in the biology of MM cells. Recently we have demonstrated that heparin-binding EGF-like growth factor (HB-EGF), one of the ten members of the Epidermal Growth Factor (EGF) family, is produced by the tumor microenvironment and is able to trigger myeloma cell growth. As amphiregulin (AREG) is another member of the EGF family that also binds heparan-sulphate chains, we investigated its role in MM. We looked for AREG expression on a panel of 7 normal plasmablastic cells (PPCs), 7 normal bone marrow plasma cells (BMPCs), purified MM cells from 65 patients and 20 myeloma cell lines (HMCLs), with Affymetrix U133A+B microarrays. We showed that primary MM cells overexpress AREG compared to normal BMPCs and PPCs. We then investigated the expression of the ErbB receptors with real-time RT-PCR. Myeloma cells variably expressed the 4 ErbB receptors. Normal BMPCs also expressed ErbB1 and ErbB2 unlike PPCs that did not express any ErbB receptors. We demonstrated that the high AREG expression by primary myeloma cells may have a dual effect. On the one hand, AREG stimulated IL-6 production and growth of bone-marrow stromal cells that highly express the AREG ErbB1 receptor. On the other hand, AREG could promote HMCL proliferation, suggesting that a functional autocrine loop involving AREG and ErbB receptors is involved in MM cell growth. Finally, we looked for the effect of ErbB inhibitors on MM cells of 14 patients cultured for 6 days together with their bone marrow environment. A pan-ErbB inhibitor (PD-169540, Pfizer) and an ErbB1-inhibitor (IRESSA, Astrazeneca) induced strong MM cell apoptosis in respectively 71% of patients (10 of 14) and 29% of patients (4 of 14). Of major interest, when PD169540 or IRESSA were combined with dexamethasone, they induced a dramatic myeloma cell death (respectively 92% and 69% inhibition of MM cell survival), while non-myeloma cells were unaffected. Thus ErbB activation is critical to trigger MM-cell survival in short-term culture. In conclusion, our findings provide evidence for a major role of AREG and HB-EGF in the biology of multiple myeloma and identify ErbB receptors as putative therapeutic targets. These data emphasize the interest of clinical evaluation of specific-ErbB-inhibitors in patients with MM, either used alone or in combination with dexamethasone.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 355-355
Author(s):  
Kelvin P. Lee ◽  
Nizar J. Bahlis ◽  
Anne M. King ◽  
Despina Kolonias ◽  
Louise M. Carlson ◽  
...  

Abstract Although interactions with bone marrow stromal cells are essential for multiple myeloma (MM) cell survival, the specific molecular and cellular elements involved are largely unknown due to the complexity of the bone marrow microenvironment. The CD28 receptor, which costimulates survival signals in T cells, is also expressed on normal plasma cells and myeloma cells. In MM, CD28 expression correlates significantly with disease progression, also suggesting a pro-survival function. In contrast to T cells however, activation and function of CD28 in myeloma and plasma cells is almost entirely undefined. We found that direct activation of myeloma cell CD28 by anti-CD28 mAb alone induced activation of NFkappaB, suppressed MM cell proliferation and protected against serum starvation and dexamethasone-induced cell death. We hypothesized that the specific CD80/CD86 expressing stromal cell partner of this interaction is a professional antigen presenting cells, in particular dendritic cells. Histological studies demonstrated DC were extensively interdigitated throughout the myeloma infiltrates in patient bone marrow biopsies. In vitro coculture with DC also elicited CD28-mediated effects on MM survival and proliferation, and could be blocked by CD28Ig. Our findings suggest a previously undescribed myeloma:DC cell-cell interaction involving CD28 that may play an important role in myeloma cell survival within the bone marrow stroma. These data also suggest that CD28 may represent a therapeutic target in the treatment of multiple myeloma.


Blood ◽  
2009 ◽  
Vol 113 (18) ◽  
pp. 4309-4318 ◽  
Author(s):  
Yu-Tzu Tai ◽  
Ender Soydan ◽  
Weihua Song ◽  
Mariateresa Fulciniti ◽  
Kihyun Kim ◽  
...  

Abstract CS1 is highly expressed on tumor cells from the majority of multiple myeloma (MM) patients regardless of cytogenetic abnormalities or response to current treatments. Furthermore, CS1 is detected in MM patient sera and correlates with active disease. However, its contribution to MM pathophysiology is undefined. We here show that CS1 knockdown using lentiviral short-interfering RNA decreased phosphorylation of ERK1/2, AKT, and STAT3, suggesting that CS1 induces central growth and survival signaling pathways in MM cells. Serum deprivation markedly blocked survival at earlier time points in CS1 knockdown compared with control MM cells, associated with earlier activation of caspases, poly(ADP-ribose) polymerase, and proapoptotic proteins BNIP3 and BIK. CS1 knockdown further delayed development of MM tumor and prolonged survival in mice. Conversely, CS1 overexpression promoted myeloma cell growth and survival by significantly increasing myeloma adhesion to bone marrow stromal cells (BMSCs) and enhancing myeloma colony formation in semisolid culture. Moreover, CS1 increased c-maf–targeted cyclin D2-dependent proliferation, -integrin β7/αE-mediated myeloma adhesion to BMSCs, and -vascular endothelial growth factor-induced bone marrow angiogenesis in vivo. These studies provide direct evidence of the role of CS1 in myeloma pathogenesis, define molecular mechanisms regulating its effects, and further support novel therapies targeting CS1 in MM.


Sign in / Sign up

Export Citation Format

Share Document