Cytotoxic Impacts of N-Oleoylethanolamine in Bone Cancer Cells

Author(s):  
Hüseyin İzgördü ◽  
Canan Vejselova Sezer ◽  
Kadir Bayçelebi ◽  
Murat Baloğlu ◽  
Hatice Mehtap Kutlu

Background: Cancer is a complex disease that is derived from the uncontrolled proliferation of cells. Bone cancer is a type of prevalent cancer that occurs both in youngsters and adults. Bone cancer is mostly common in the long bones of the pelvis, arms, and legs. Statistically, more than 200 cases of osteosarcoma have been reported annually in our country. Classical treatment with chemotherapeutics remains ineffective for the cure of this cancer. Recent studies have shown that ceramide induces apoptosis due to its increased levels in the cells. Thus, many studies have been conducted for the accumulation of ceramide molecules in the cell by different ways to induce apoptosis. NOE (N-oleoylethanolamine) is a specific inhibitor of ceramidase enzymes that hydrolyse intracellular ceramides and prevent apoptosis. Objective: This study investigates the cytotoxic and apoptosis-inducing activities of NOE on human osteosarcoma Saos-2 cells. Methods: Cytotoxic effects were investigated by MTT colorimetric assay. For the detection of morphological and ultrastructural indicators of apoptosis, confocal and TEM techniques were used, respectively. Results: Our finding indicated that NOE is effective in the inhibition of the growth of Saos-2 cells. Confocal and TEM findings showed morphological and ultrastructural changes as chromatin condensation, fragmentations of nuclei and mitochondria, as well as damaged cytoskeleton and cell shrinkage. Conclusion: The results revealed that NOE exhibits its cytotoxicity on Saos-2 cells by changing the ultrastructure and morphology of cells with clear apoptotic sparks.

2013 ◽  
Vol 587 ◽  
pp. 303-308 ◽  
Author(s):  
Andreea Carmen Bărbînţă ◽  
Kamel Earar ◽  
Carmen Iulia Crimu ◽  
Lucia Anişoara Drăgan ◽  
Corneliu Munteanu

Titanium alloys are widely used in medical applications, due to their good mechanical properties, high corrosion resistance and biocompatibility. The aim of this paper was to investigate the cytotoxicity of novel titanium alloys: Ti21Nb6Zr15Ta, Ti25Nb10Zr8Ta, Ti17Nb5Zr5Al, Ti7Nb7Zr2Al with fibroblast-like cells derived from human osteosarcoma cell line (HOS). The results were compared with that of conventional biomedical alloys, like Ti6Al7Nb and Ti6Al4V. In vitro citotoxicity of titanium alloys was evaluated by fluorescence microscopy and MTT colorimetric assay. The results showed that the materials analyzed had no cytotoxic effects on HOS fibroblast-like cells, permitting their attachment and proliferation. Also the new titanium alloys present a higher cell viability than that of the conventional alloys. As a consequence, the TiNbZrTa and TiNbZrAl alloys can be considered as potential candidates for biomedical applications.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 354
Author(s):  
Katerina Gioti ◽  
Anastasia Papachristodoulou ◽  
Dimitra Benaki ◽  
Nektarios Aligiannis ◽  
Alexios-Leandros Skaltsounis ◽  
...  

Oleuropein (OLEU) is the most distinguished phenolic compound found in olive fruit and the leaves of Olea europaea L., with several pharmacological properties, including anti-cancer actions. Adriamycin (ADR) is an anthracycline widely used as a chemotherapeutic agent, although it presents significant side effects. The aim of the present study was to investigate the effect of oleuropein alone (20 μg/mL) and in co-treatment with ADR (50 nM), in MG-63 human osteosarcoma cells. Therefore, cellular and molecular techniques, such as MTT assay, flow cytometry, real-time Polymerase Chain Reaction (PCR), western blot and Elisa method, as well as Nuclear Magnetic Resonance (NMR) spectroscopy, were applied to unveil changes in the signal transduction pathways involved in osteosarcoma cells survival. The observed alterations in gene, protein and metabolite levels denote that OLEU not only inhibits MG-63 cells proliferation and potentiates ADR’s cytotoxicity, but also exerts its action, at least in part, through the induction of autophagy.


2014 ◽  
Vol 9 (5) ◽  
pp. 531-542 ◽  
Author(s):  
Waqas Ahmad ◽  
Sohail Ejaz ◽  
Khaleeq Anwar ◽  
Muhammad Ashraf

AbstractInfectious bursal disease (IBD) caused by non-enveloped double stranded RNA virus is an acute and contagious poultry disease. Outbreak of IBD could result in 10–75% mortality of the birds; hence it has gained socio-economic importance worldwide. Medicinal plants have shown broad spectrum anti-viral activities against RNA and DNA viruses. Moringa oleifera Lam (MOL), Phyllanthus emblicus Linn (PEL), Glycyrrhiza glabra Linn (GGL), and Eugenia jambolana Lam (EJL) are commonly available medicinal plants of the sub-continent and exhibited anti-viral potential against different viruses. Ethanolic extracts of the leaves of MOL and EJL, roots of GGL and dried fruit of PEL were investigated for their cytotoxic and anti-viral potential against IBD virus using MTT colorimetric assay and anti-viral assay. Significant anti-viral potential (P<0.001) was demonstrated at concentrations 12.5, 25, 50 and 100 µg ml−1 of GGL, PEL, MOL and EJL, respectively, with no cytotoxicity. Data also spotlighted that all tested plant extracts possess significant anti-viral potential and this trend was higher in GGL followed by PEL, MOL, and EJL. The data undoubtedly conclude that these medicinal plants contain several health beneficial phyto-chemicals which got significant anti-viral potential and effectively be utilized against IBD virus. Moreover, the outcomes of this study provide a platform on the way to discover novel anti-viral agents against IBD virus and other viruses from plant origin.


Zygote ◽  
2001 ◽  
Vol 9 (4) ◽  
pp. 309-316 ◽  
Author(s):  
Carsten Krischek ◽  
Burkhard Meinecke

In the present study the effects of roscovitine on the in vitro nuclear maturation of porcine oocytes were investigated. Roscovitine, a specific inhibitor of cyclin-dependent protein kinases, prevented chromatin condensation in a concentration-dependent manner. This inhibition was reversible and was accompanied by non-activation of p34cdc2/histone H1 kinase. It also decreased enzyme activity of MAP kinase, suggesting a correlation between histone H1 kinase activation and the onset of chromatin condensation. The addition of roscovitine (50 μM) to extracts of metaphase II oocytes revealed that the MAP kinase activity was not directly affected by roscovitine, which indicates a possible link between histone H1 and MAP kinase. Chromatin condensation occurred between 20 and 28 h of culture of cumulus-oocyte complexes (COCs) in inhibitor-free medium (germinal vesicle stage I, GV1: 74.6% and 13.7%, respectively). Nearly the same proportion of chromatin condensation was detected in COCs incubated initially in inhibitor-free medium for 20-28 h and subsequently in roscovitine-supplemented medium (50 μM) for a further 2-10 h (GV I: 76.2% and 18.8%, respectively). This observation indicates that roscovitine prevents chromatin condensation even after an initial inhibitor-free cultivation for 20 h. Extending this initial incubation period to ≥22 h led to an activation of histone H1 and MAP kinase and increasing proportions of oocytes exhibiting chromatin condensation in the presence of roscovitine. It is concluded that histone H1 kinase is involved in the induction of chromatin condensation during in vitro maturation of porcine oocytes.


2021 ◽  
Vol 12 (2) ◽  
pp. 1272-1275
Author(s):  
Angu Bala Ganesh K S V ◽  
Sujeet Shekhar Sinha ◽  
Kesavi Durairaj ◽  
Abdul Sahabudeen K

Naphthalene is a bicyclic aromatic constituent commonly used in different domestic and marketable applications comprising soil fumigants, lavatory scent disks and mothballs. Accidentally, workers, children and animals are exposed to naphthalene mothballs, so there is a need to study the pathology behind this chemical toxicity. The current study was carried out to assess the ultra structural changes of basolateral amygdaloid nuclei in the Sprague Dawley rats brain in association to naphthalene toxicity. The toxicity model group was administered with naphthalene (200 and 400mg) using corn oil as a vehicle for 28 days. The post delayed toxicity of naphthalene high dose ingestion was also assessed in rats. After the experimental period, the brain tissue was processed to observe the ultra structural changes using a transmission electron microscope. The alterations in cell organelles, nuclei damage, mitochondrial swelling, chromatin condensation suggested naphthalene induced damage in the neurons of the basolateral amygdala of the brain in the toxicity model group. These experimental trials provide information about the alert of mothball usage in the home and identify risks linked with accidental exposure and misuse.


1998 ◽  
Vol 201 (4) ◽  
pp. 479-486
Author(s):  
M Azuma ◽  
Y Ohta

A proton-translocating vacuolar-type ATPase (V-ATPase) was identified and characterized in the anterior silk gland of Bombyx mori. By incubating the intact tissue with the fluorescent dye Acridine Orange, the acidified compartment was detected at the apical pole of the epithelial cells. This was observed throughout the feeding period of the fifth-instar larva until the onset of spinning. Acidification was prevented completely and reversibly by 0.8 micromol l-1 bafilomycin A1, a specific inhibitor of V-ATPase. The presence of V-ATPase in a microsomal fraction was verified by immunoblots using an antiserum to the V-ATPase holoenzyme from Manduca sexta midgut. The antiserum localized the V-ATPase to the apical plasma membrane of the anterior silk gland cells, suggesting that the enzyme is functionally active in pumping protons out of the cell towards the glandular lumen of feeding silkworm larvae. In spinning larvae, the acidification produced by the V-ATPase appears to cease, because acidic compartments were seen rarely and only in the periphery of basal cytoplasm, and because immunocytochemical staining for the V-ATPase was greatly reduced at the apical surface. The metamorphic changes in relation to the occurrence of V-ATPase corresponded well with the ultrastructural changes in the anterior silk gland cell of Bombyx mori larvae.


2019 ◽  
Vol 6 (4) ◽  
pp. 156-158
Author(s):  
Abdu-Alhameed A Ali Azzwali ◽  
 Azab Elsayed Azab

The present review aims to spotlight on the mechanisms and stages of programmed cell death. Apoptosis, known as programmed cell death, is a homeostatic mechanism that generally occurs during development and aging in order to keep cells in tissue. It can also act as a protective mechanism, for example, in immune response or if cells are damaged by toxin agents or diseases. In cancer treatment, drugs and irradiation used in chemotherapy leads to DNA damage, which results in triggering apoptosis through the p53 dependent pathway in cancer treatment, drugs and irradiation used in chemotherapy leads to DNA damage, which results in triggering apoptosis through the p53 dependent pathway. Corticosteroids can cause apoptotic death in a number of cells. A number of changes in cell morphology are related to the different stages of apoptosis, which includes nuclear DNA fragmentation, cell shrinkage, chromatin condensation, membrane blebbing, and the formation of apoptotic bodies. There are three pathways for apoptosis, the intrinsic (mitochondrial) and extrinsic (death receptor) are the two major paths that are interlinked and that can effect one another. Conclusion: It can be concluded that apoptosis is a homeostatic mechanism that generally occurs during development and aging in order to keep cells in tissue. Drugs and irradiation used in chemotherapy leads to DNA damage, which results in triggering apoptosis through the p53 dependent pathway. The apoptosis, stages are includes nuclear DNA fragmentation, cell shrinkage, chromatin condensation, membrane blebbing, and the formation of apoptotic bodies. There are three pathways for apoptosis.


Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 508
Author(s):  
Jie Qiu ◽  
Chao Gao ◽  
Hongli Wei ◽  
Biao Wang ◽  
Yang Hu ◽  
...  

To study the flowering biology of Rhododendron pulchrum, we used scanning electron microscopy (SEM) and paraffin sectioning to observe the microstructures of its floral organs, a methyl thiazolyl tetrazolium (MTT) colorimetric assay to detect pollen viability in different periods, continuous observations to study flowering phenology, and artificial pollination and a benzidine-hydrogen peroxide method to determine stigma receptivity. R. pulchrum exhibited a centralized flowering phenology. The protogynous stigmas of R. pulchrum were able to receive pollen before flowering. The pollen grains of R. pulchrum fused into tetrads, the average ratio of the polar axis length to the equatorial axis length (P/E) was 1.05, and the pollen viability was highest in the initial flowering period, reaching 88.98%. The pollen/ovule (P/O) ratio was 266–328, and the outcrossing index (OCI) was 4; the vitality of R. pulchrum pollen remained high in the initial flowering and blooming periods. Compared with the lifespan of a single flower, pollen vitality remained high for most of the experimental period, thereby improving male fitness. The P/O ratio suggests that R. pulchrum may have a facultative outcrossing breeding system. The OCI estimation suggests that R. pulchrum is partially self-compatible, most likely requiring pollinators to complete pollination.


1997 ◽  
Vol 32 (2) ◽  
pp. 177-194 ◽  
Author(s):  
Y. Figenschau ◽  
M. I. Yousef ◽  
B. Sveinbjornsson ◽  
K. Bertheussen

Sign in / Sign up

Export Citation Format

Share Document