Newly synthesized benzimidazoles inhibits vascular endothelial growth factor and matrix metalloproteinase-2 and -9 levels in prostate cancer cells

Author(s):  
Suleyman Ilhan ◽  
Gamze Dilekci ◽  
Adem Guner ◽  
Hakan Bektas

Background: Investigating the effects of newly synthesized agents on various molecular mechanisms to understand their mechanism of action is an important step of pre-clinical screening. Benzimidazoles are composed of a unique fused benzene and imidazole ring and have attracted great attention due to their broad bioactivities, including antitumor. Objective: In the current study, we reported the synthesis of novel benzimidazole derivatives and investigated the possible cytotoxic and anti-angiogenic effects on human prostate cancer and umbilical vein endothelial cells (HUVECs). Methods: MTT assay was used to assess cell viability. A scratch assay was conducted to monitor the migration of cells. mRNA expression levels of VEGF, MMP-2, and MMP-9 were evaluated using qPCR. Changes in protein levels were evaluated by western blotting. Results: Compound G1, having a chlorine moiety, showed a potent cytotoxic activity on both prostate cancer cells and HUVECs, and inhibited cell migration via decreasing the mRNA and protein levels of key angiogenesis-related molecules such as VEGF, MMP-2, and MMP-9. Conclusion: These results suggest that newly synthesized G1 may be a novel anti-angiogenic agent for prostate cancer treatment.

Bone Research ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Navatha Shree Polavaram ◽  
Samikshan Dutta ◽  
Ridwan Islam ◽  
Arup K. Bag ◽  
Sohini Roy ◽  
...  

AbstractUnderstanding the role of neuropilin 2 (NRP2) in prostate cancer cells as well as in the bone microenvironment is pivotal in the development of an effective targeted therapy for the treatment of prostate cancer bone metastasis. We observed a significant upregulation of NRP2 in prostate cancer cells metastasized to bone. Here, we report that targeting NRP2 in cancer cells can enhance taxane-based chemotherapy with a better therapeutic outcome in bone metastasis, implicating NRP2 as a promising therapeutic target. Since, osteoclasts present in the tumor microenvironment express NRP2, we have investigated the potential effect of targeting NRP2 in osteoclasts. Our results revealed NRP2 negatively regulates osteoclast differentiation and function in the presence of prostate cancer cells that promotes mixed bone lesions. Our study further delineated the molecular mechanisms by which NRP2 regulates osteoclast function. Interestingly, depletion of NRP2 in osteoclasts in vivo showed a decrease in the overall prostate tumor burden in the bone. These results therefore indicate that targeting NRP2 in prostate cancer cells as well as in the osteoclastic compartment can be beneficial in the treatment of prostate cancer bone metastasis.


Oncotarget ◽  
2017 ◽  
Vol 9 (13) ◽  
pp. 10962-10977 ◽  
Author(s):  
David W. McIlwain ◽  
Melissa L. Fishel ◽  
Alexander Boos ◽  
Mark R. Kelley ◽  
Travis J. Jerde

2020 ◽  
Vol 137 ◽  
pp. 111164 ◽  
Author(s):  
Zlata Huskova ◽  
Jana Steigerova ◽  
Jana Oklestkova ◽  
Lucie Rarova ◽  
Zdenek Kolar ◽  
...  

Endocrinology ◽  
2013 ◽  
Vol 154 (5) ◽  
pp. 1768-1779 ◽  
Author(s):  
BaoHan T. Vo ◽  
Derrick Morton ◽  
Shravan Komaragiri ◽  
Ana C. Millena ◽  
Chelesie Leath ◽  
...  

Abstract TGF-β plays an important role in the progression of prostate cancer. It exhibits both tumor suppressor and tumor-promoting activities. Correlations between cyclooxygenase (COX)-2 overexpression and enhanced production of prostaglandin (PG)E2 have been implicated in cancer progression; however, there are no studies indicating that TGF-β effects in prostate cancer cells involve PGE2 synthesis. In this study, we investigated TGF-β regulation of COX-1 and COX-2 expression in prostate cancer cells and whether the effects of TGF-β on cell proliferation and migration are mediated by PGE2. COX-1 protein was ubiquitously expressed in prostate cells; however, COX-2 protein levels were detected only in prostate cancer cells. TGF-β treatment increased COX-2 protein levels and PGE2 secretion in PC3 cells. Exogenous PGE2 and PGF2α had no effects on cell proliferation in LNCaP, DU145, and PC3 cells whereas PGE2 and TGF-β induced migration and invasive behavior in PC3 cells. Only EP2 and EP4 receptors were detected at mRNA levels in prostate cells. The EP4-targeting small interfering RNA inhibited PGE2 and TGF-β-induced migration of PC3 cells. TGF-β and PGE2 induce activation of PI3K/AKT/mammalian target of rapamycin pathway as indicated by increased AKT, p70S6K, and S6 phosphorylation. Rapamycin completely blocked the effects of TGF-β and PGE2 on phosphorylation of p70S6K and S6 but not on AKT phosphorylation. PGE2 and TGF-β induced phosphorylation of AKT, which was blocked by antagonists of PGE2 (EP4) receptors (L161982, AH23848) and PI3K inhibitor (LY294002) in PC3 cells. Pretreatment with L161982 or AH23848 blocked the stimulatory effects of PGE2 and TGF-β on cell migration, whereas LY294002 or rapamycin completely eliminated PGE2, TGF-β, and epidermal growth factor-induced migration in PC3 cells. We conclude that TGF-β increases COX-2 levels and PGE2 secretion in prostate cancer cells which, in turn, mediate TGF-β effects on cell migration and invasion through the activation of PI3K/AKT/mammalian target of rapamycin pathway.


2021 ◽  
Vol 16 (12) ◽  
pp. 1934578X2110496
Author(s):  
Yao Xu ◽  
Zhiwei Zhong ◽  
Yiwen Gao ◽  
Yuhui Wang ◽  
Lanyue Zhang ◽  
...  

The absolute configuration of diaporthe B, a pimarane diterpene isolated from the mangrove derived endophytic fungus Eutypella sp #3E, was determined by a single-crystal x-ray diffraction study. The present study aimed to investigate the effects of diaporthe B on docetaxel-resistant prostate cancer PC-3 cells. Results of our studies showed that docetaxel-resistant PC-3 cells had higher sphere-forming efficiency and an increase in adherence to collagen-coated culture plates. The protein levels of cancer stem cell (CSC)-related markers CD44, CD133, and ALDH1A1 were higher in the docetaxel-resistant PC-3 cells than in the parental cells. Treatment with diaporthe B dose-dependently inhibited the growth and induced apoptosis in the resistant cells. Moreover, diaporthe B treatment decreased the sphere-forming efficiency and the adherence to collagen-coated plates in docetaxel-resistant PC-3 cells. Diaporthe B also decreased the protein levels of CSC-related markers CD44, CD133, and ALDH1A1 in the resistant cells. In addition, a combination of diaporthe B and docetaxel had a more potent effect on growth inhibition and apoptosis in the resistant cells than either agent alone. Our studies suggest that diaporthe B inhibits the stemness of prostate cancer cells and may have therapeutic potential for enhancing the efficacy of docetaxel in docetaxel-resistant prostate cancer cells.


Sign in / Sign up

Export Citation Format

Share Document