Anti-proliferative, c-Met inhibitions and PAINS Evaluations of new Thiophene, Thiazole, Coumarin, Pyran and pyridine Derivatives

Author(s):  
Rafat M. Mohareb ◽  
Nadia Y. Megally Abdo ◽  
Rehab A. Ibrahim ◽  
Eman M. Samir

Background: 1,3-Diones are versatile reagents used for many heterocyclic transformations. Among such groups of compounds, cyclohexane-1,3-dione is widely used in organic synthesis to produce biologically active compounds. Objective: In this work, target molecules were synthesized from tetrahydrobenzo[b]thiophen-3- carboxamide derivative with different substituents, and their structure-activity relationships were discussed in detail. Method: Cyclohexane-1,3-dione underwent different multi-component reactions to produce fused thiophene, thiazole, coumarin, pyran, and pyridine derivatives. The anti-proliferative activity of the newly synthesized compounds toward the six cancer cell lines, namely A549, H460, HT-29, MKN-45, U87MG, and SMMC-7721 was studied. In addition, inhibitions of the most active compounds toward cancer cell lines classified according to the disease were also studied. Furthermore, Pan Assay Interference compounds (PAINS) of the selected compounds were analyzed, along with the c-Met inhibitions. Results: Anti-proliferative evaluations were performed for all of the synthesized compounds, in which the varieties of substituents through the aryl ring and the heterocyclic ring afforded compounds with high activities. Inhibition activity against the cancer cell lines classified according to the disease, c-Met, and PAINS of the synthesized compounds were measured. Conclusion: Compounds 3, 13a, 13b, 14a, 16f, 17a, 28, 30a, and 31were the most cytotoxic compounds toward the six cancer cell lines. Inhibition toward cancer cell lines classified according to the disease showed that, in most cases, the presence of the electronegative CN and or Cl groups within the molecule was responsible for its high activity.

2020 ◽  
Vol 20 (10) ◽  
pp. 1209-1220
Author(s):  
Rafat M. Mohareb ◽  
Ensaf S. Alwan

Background: Recently tetrahydrobenzo[b]thiazole derivatives acquired a special attention due to their wide range of pharmacological activities especially the therapeutic activities. Through the market it was found that many pharmacological drugs containing the thiazole nucleus were known. Objective: This work aimed to synthesize target molecules not only possess anti-tumor activities but also kinase inhibitors. The target molecules were obtained starting from the arylhydrazonocyclohexan-1,3-dione followed by their heterocyclization reactions to produce anticancer target molecules. Methods: The arylhydrazone derivatives 3a-c underwent different heterocyclization reactions to produce thiophene, thiazole, pyrazole and 1,2,4-triazine derivatives. The anti-proliferative activity of twenty six compounds among the synthesized compounds toward the six cancer cell lines namely A549, H460, HT-29, MKN-45, U87MG, and SMMC-7721 was studied. Results: Anti-proliferative evaluations, tyrosine and Pim-1 kinase inhibitions were perform for most of the synthesized compounds where the varieties of substituent through the aryl ring and the thiophene moiety afforded compounds with high activities. Conclusion: The compounds with high anti-proliferative activity towards the cancer cell lines showed that compounds 3b, 3c, 5e, 5f, 8c, 9c, 11c, 12c, 14e, 14f and 16c were the most cytotoxic compounds. Further tests of the latter compounds toward the five tyrosine kinases c-Kit, Flt-3, VEGFR-2, EGFR, and PDGFR and Pim-1 kinase showed that compounds 3c, 5e, 5f, 8c, 9c, 12c, 14e, 14f and 16c were the most potent of the tested compounds toward the five tyrosine kinases and compounds 6d, 11a, 20b and 21e were of the highest inhibitions towards Pim-1 kinase. Pan Assay Interference Compounds (PAINS) for the most cytotoxic compounds showed zero PAINS alert and can be used as lead compounds.


Author(s):  
Rafat M. Mohareb ◽  
Yara R. Milad ◽  
Reem A. El-Ansary

Background:: Recently multi-component reactions producing pyran and pyridine derivatives acquired a special attention due to their wide range of pharmacological activities especially the therapeutic activities. Through the market it was found that many pharmacological drugs containing the pyran and pyridine nucleus were known. Objective:: We are aiming in this work to synthesize target molecules not only possess anti-tumor activities but also kinase inhibitors. The target molecules were obtained starting from cyclohexan-1,3-dione followed by its heterocyclization reactions to produce anticancer target molecules. Methods:: This work demonstrated multi-component reactions of cyclohexan-1,3-dione with aromatic aldehydes and diethylmalonate using triethylamine as a catalyst to give the 7,8-dihydro-4H-chromen-5(6H)-one derivatives 4a-c. The reaction of compounds 4a-c with either of hydrazine hydrate of phenylhydrazine gave the chromeno[2,3-c]pyrazole derivatives 5a-f, respectively. In addition, further heterocyclization reactions were adopted to give the chromeno[3,2-d]isoxazole, chromene-3-carboxamide derivatives. Moreover, the multi-component reaction of cyclohexan-1,3-dione (1) with either of aromatic aldehydes and diethylmalonate using a catalytic amount of ammonium acetate gave the 1,4,5,6,7,8-hexahydroquinoline derivatives 13a-c. The anti-proliferative activities of the synthesized compounds toward the six cancer cell lines namely A549, H460, HT-29, MKN-45, U87MG, and SMMC-7721 were studied. In addition the c-Met enzymatic activities and inhibition toward the prostate cancer cell PC-3 were measured. Results:: Anti-proliferative evaluations, c-Met enzymatic activities and inhibition toward the prostate cancer cell PC-3 were measured and the results obtained in most cases, indicated that the presence of electronegative Cl group through the molecule favour the inhibitions. Conclusion:: The compounds with high anti-proliferative activity towards the cancer cell lines were 4a, 4b, 6d, 6e, 6f, 10e, 10f, 12c, 14e, 14f, 15c, 16d, 16e, 16f, 19c and 20c. Compounds 4b, 6c, 6d, 8b, 10c, 10d, 12b, 13b, 14c, 14d, 15b, 16c, 16d, 17b, 17c, 19b, 20b and 20c exhibited high potency against c-Met kinase and compounds 4a, 4b, 6b, 6c, 6d, 6f, 8b, 8c, 10c, 10d, 10e, 12b, 12c, 13a, 13b, 13c, 14c, 14d, 14e, 14f, 15b, 15c, 16b, 16c, 16d, 17b, 17c, 19c, 19d, 20a, 20b and 20c displayed high inhibitions toward PC-3 cell line.


Author(s):  
Rafat M. Mohareb ◽  
Yara R. Milad ◽  
Bahaa M. Mostafa ◽  
Reem A. El-Ansary

Background: Benzo[d]imidazoles are highly biologically active, in addition, they are considered as a class of heterocyclic compounds with many pharmaceutical applications. Objective: We are aiming in this work to synthesize target molecules not only possess anti-tumor activities but also kinase inhibitors. The target molecules were obtained starting from the benzo[d]imidazole derivatives followed by their heterocyclization reactions to produce anticancer target molecules. Methods: The 1-(1H-benzo[d]imidazol-2-yl)propan-2-one (3) and the ethyl 2-(1H-benzo[d]imidazol-2-yl)acetate (16) were used as the key starting material which reacted with salicylaldehyde to give the corresponding benzo[4,5]imidazo[1,2-a]quinoline derivatives. On the other hand, both of them were reacted with different reagents to give thiophene, pyran and benzo[4,5]imidazo[1,2-c]pyrimidine derivatives. The synthesized compounds were evaluated against the six cancer cell lines A549, HT-29, MKN-45, U87MG, and SMMC7721 and H460 together with inhibitions toward tyrosine kinases, c-Met kinase and prostate cancer cell line PC-3 were recorded using the standard MTT assay in vitro, with foretinib as the positive control. Results: Most of the synthesized compounds exhibited high inhibitions toward the tested cancer cell lines. In addition, tyrosine and Pim1 kinases inhibitions were performed for the most active compounds where variation of substituent through the aryl ring and heterocyclic ring afforded compounds with high activities. Our analysis showed that there is a strong correlation between structure of compound and substituents of target molecules. Conclusion: Our present research proved that the synthesized heterocyclic compounds with varieties of substituents has a strong impact through the activity of compounds. The evaluations through different cell lines and tyrosine kinases indicated that the compounds were excellent candidates as anticancer agents. This could encourage doing further research within this field for the building of compounds with high inhibitions.


Author(s):  
Rafat M. Mohareb ◽  
Amira M. Elmetwally ◽  
Abeer A. Mohamed

Background: Recently products of multi-component reactions (MCR’s) acquired a special attention due to their wide range of pharmacological activities especially the therapeutic activities. Through the market it was found that many pharmacological drugs containing the pyran and pyridine nucleus that were produced through MCR’s were known. Objective: We are aiming in this work to synthesize target molecules not only possess anti-tumour activities but also cMet and prostate cancer inhibitors. The target molecules were obtained starting from cyclohexan-1,3-dione through its multi-component reactions to produce anticancer target molecules. Methods: Cyclohexan-1,3-dione underwent different multi-component reactions to produce fused pyran, pyridine and thiophene derivatives. The anti-proliferative activity of the newly synthesized compounds among the synthesized compounds toward the six cancer cell lines namely A549, H460, HT-29, MKN-45, U87MG, and SMMC-7721 was studied. In addition, inhibitions toward c-Met kinase and prostate cancer cell line were studied. Antitumor evaluations toward seventeen cancer cell lines subpanel according the diseases, for certain compounds were also demonstrated. Pim-1 kinase inhibitions of the most active compounds were also measured. Results: Anti-proliferative evaluations, c-Met and Pim-1 kinase inhibitions were performed for most of the synthesized compounds where the varieties of substituent through the aryl ring and the heterocyclic ring afforded compounds with high activities. Conclusion: Compounds 4b, 6b, 8b, 9a, 11b, 12b, 17b, 18b, 19, 22c, 23b and 25b were the most cytotoxic compounds toward the six cancer cell lines. Inhibitions toward c-Met kinase and prostate cancer cell showed that the presence of the electronegative Cl group within the molecule was responsible for its high activity. In addition, inhibitions toward Pim-1 kinase exhibited that most of tested compounds showed high inhibitions.


2019 ◽  
Vol 9 (4) ◽  
pp. 341-348 ◽  
Author(s):  
Ibrahim Awad Mohammed ◽  
Muhammad Nadeem Akhtar ◽  
Foo Jhi Biau ◽  
Yin Sim Tor ◽  
Seema Zareen ◽  
...  

<P>Background: Breast cancer and human colon cancer are the most common types of cancer in females and males, respectively. Breast cancer is the most common type of cancer after lung and colon cancers. Natural products are an important source for drug discovery. Boesenbergia rotunda (L.) Mansf. is commonly known as finger root, belonging to the Zingiberaceae family. </P><P> Objective: The aim of this study to isolate some natural compounds from the rhizomes of B. rotunda (L.) Mansf., and to investigate their cytotoxicity against the human triple-negative breast cancer cell (MDA-MB-231) and HT-29 colon cancer cell lines. </P><P> Methods: The dried rhizomes of B. rotunda were extracted with methanol. The methanolic extract was further used for solvent-solvent extraction. Bioassay-guided extraction and isolation of the rhizomes of the B. rotunda exhibited cytotoxic properties of hexane and dichloromethane fractions. </P><P> Results: Six major chemical constituents, pinostrobin (1), pinostrobin chalcone (2), cardamonin (3), 4,5-dihydrokawain (4), pinocembrin (5), and alpinetin (6) were isolated from the rhizomes of the B. rotunda. All the chemical constituents were screened against the human triple-negative breast cancer cell (MDA-MB-231) and HT-29 colon cancer cell lines. The compound cardamonin (3) (IC50 = 5.62&#177;0.61 and 4.44&#177;0.66 &#181;g/mL) and pinostrobin chalcone (2), (IC50 = 20.42&#177;2.23 and 22.51&#177;0.42 μg/mL) were found to be potent natural cytotoxic compounds against MDA-MB-231 and HT-29 colon cancer cell lines, respectively. </P><P> Conclusion: Cardamonin (3) and pinostrobin chalcone (2) were found to be the most potential natural compounds against breast cancer cell line MDA-MB-231 and colon cancer HT-29 cell line.</P>


2014 ◽  
Vol 24 (5) ◽  
pp. 1366-1372 ◽  
Author(s):  
Upendar Reddy Chamakura ◽  
E. Sailaja ◽  
Balakrishna Dulla ◽  
Arunasree M. Kalle ◽  
S. Bhavani ◽  
...  

2020 ◽  
Vol 32 (5) ◽  
pp. 1197-1202
Author(s):  
Consolacion Y. Ragasa ◽  
Glenn G. Oyong ◽  
Maria Carmen S. Tan ◽  
Mariquit M. De Los Reyes ◽  
Maria Ellenita G. De Castro

Ergosterol peroxide (1) and ergosterol (2) were commonly isolated as the major compounds of Philippine mushrooms. Sterols 1 and 2 from the dichloromethane extract of Geastrum triplex and Termitomyces clypeatus, respectively, were evaluated for their cytotoxic activities against four human cancer cell lines, viz., breast cancer (MCF-7), colon cancer (HT-29), leukemia (THP-1), and small lung cell carcinoma (H69PR), and a human normal cell line, human dermal fibroblast-neonatal (HDFn), using the PrestoBlue® cell viability assay. Compounds 1 and 2 exhibited the strongest activities against HT-29 with IC50 values of 1.79 and 2.98 μg/mL, respectively, while Zeocin gave an IC50 of 4.89 μg/mL. These compounds also exhibited strong antiproliferative effects against MCF-7 with IC50 values of 4.13 for 1 and 4.20 μg/mL for compound 2, comparable to Zeocin with IC50 = 3.68 μg/mL. Only moderate cytotoxicity resulted when compounds 1 and 2 were tested against H69PR with IC50 values of 7.78 and 6.83 μg/mL, respectively, while Zeocin exhibited an IC50 of 9.81 μg/mL. Furthermore, compounds 1 and 2 showed no effects against THP-1 (IC50 > 100 μg/mL), while Zeocin showed an IC50 of 4.73 μg/mL. Although compounds 1 and 2 have been reported to exhibit different bioactivities in previous studies, the cancer cell lines tested and/or the polarities of the solvents for extraction varied. Therefore, comparisons of the cytotoxic activities of compounds 1 and 2 with earlier studies could not be made extensively.


Molbank ◽  
10.3390/m1173 ◽  
2020 ◽  
Vol 2020 (4) ◽  
pp. M1173
Author(s):  
Rajaiah Raveesha ◽  
Malavalli Guruswamy Dileep Kumar ◽  
Salekoppal Boregowda Benaka Prasad

The synthesis of a wide variety of 3-trifluoromethyl-5,6-dihydro-[1,2,4]triazolo pyrazine derivatives, by the treatment of 3-trifluoromethyl-5,6,7,8-tetrahydro-[1,2,4]triazolo[4,3-α]pyrazine hydrochloride with an array of isocyanates in the presence of triethylamine, is reported. All the target compounds were synthesized in excellent yields under mild reaction conditions. The target molecules were effectively screened for their anti-cancer properties and the results are promising. The resultant compounds were assessed for their antiproliferative action against two human colon cancer cell lines (HCT-116 and HT-29 colon cancer cell lines). The IC50 range was estimated at 6.587 to 11.10 µM showing that compound RB7 had remarkable anticancer movement on HT-29. Additionally, it was discovered that RB7 incited the mitochondrial apoptotic pathway by up-regulating Bax and down-regulating Bcl2, eventually leading to the activation of Caspase 3 in HT-29 cells and initiation of cell death via the mitochondrial apoptotic pathway.


2017 ◽  
Vol 12 (10) ◽  
pp. 1934578X1701201 ◽  
Author(s):  
Hossein H. Mirzaei ◽  
Omidreza Firuzi ◽  
Ian T. Baldwin ◽  
Amir Reza Jassbi

Methanol (MeOH), dichloromethane (DCM) and 80% MeOH extractions of fourteen medicinal plants of the families Solanaceae and Lamiaceae collected from different area of Iran were tested for their cytotoxic potential against MOLT-4 human cancer cell lines. Cytotoxicity of the tested plants indicated that 11 plants had one or two active extracts (IC50 ≤50): MeOH extracts of the shoots of Thymus trautvetteri, Solanum luteum and stems of Lycium shawii; DCM extracts of the shoots of Thymus kotschyanus, Salvia persepolitana, Ballota aucheri, Nepeta glomerulosa, Hyoscyamus tenuicaulis, Salvia lachnocalyx, Salvia sharifii as well as the stems of Salvia verticillata and the roots of Salvia multicaulis and S. lachnocalyx; 80% MeOH extracts of the shoots of T. trautvetteri, S. luteum and the stems of L. shawii. The DCM extract of the aerial parts of S. lachnocalyx as one of the most active species was subjected to the cytotoxic bioassay-guided fractionation and purification using combination of chromatography methods. The bioassay-guided fractionation of DCM extract of the shoots of S. lachnocalyx led to the isolation of two cytotoxic compounds: (2 Z,6 Z,10 Z,14 E)-geranylfarnesol (1), a novel natural product, and spathulenol (2). Both of the isolated compounds, especially 1 (IC50 range: 9.6 −20.2 μg/mL), showed good cytotoxic effects against 3 human cancer cell lines, MOLT-4, MCF-7 and HT-29.


Sign in / Sign up

Export Citation Format

Share Document