Finite Element Simulation and Deformation Control of High-Speed Milling of Al7050-T7451 Thin-walled Parts

2021 ◽  
Vol 15 ◽  
Author(s):  
Song Yang ◽  
Jun-Xue Yang ◽  
Fei-Yue Wang

Background: To reduce environmental pollution and improve resource utilization, lightweight equipment has become an important development trend of manufacturing. Therefore, thin-walled parts are being widely used in automobiles, aerospace, etc. due to their lightweight and high specific strength. However, they usually deform during machining due to poor stiffness. Objective: To reduce the machining deformation, the finite element method has been used to analyze the deformation law of thin-walled parts. Method: A 3D milling model of Al7050-T7451 thin-walled parts was established. Then, the influence of hole structure, rib, and auxiliary support on the deformation was investigated under the condition of optimized parameters. Moreover, some related patents on the research of machining deformation of thin-walled parts were also consulted. Results: The results showed that the established 3D model could accurately predict the machining deformation of thin-walled parts. The machining deformation on the edges is more severe due to holes that weaken the stiffness of thin-walled parts. Besides, ribbed slab and auxiliary support can shorten machining deformation by 71.9% and 65.2%, respectively.

2003 ◽  
Vol 41 (10) ◽  
pp. 891-900 ◽  
Author(s):  
A.G Mamalis ◽  
D.E Manolakos ◽  
M.B Ioannidis ◽  
P.K Kostazos ◽  
C Dimitriou

2017 ◽  
Vol 54 (1) ◽  
pp. 180-179 ◽  
Author(s):  
Raul Cormos ◽  
Horia Petrescu ◽  
Anton Hadar ◽  
Gorge Mihail Adir ◽  
Horia Gheorghiu

The main purpose of this paper is the study the behavior of four multilayered composite material configurations subjected to different levels of low velocity impacts, in the linear elastc domain of the materials, using experimental testing and finite element simulation. The experimental results obtained after testing, are used to validate the finite element models of the four composite multilayered honeycomb structures, which makes possible the study, using only the finite element method, of these composite materials for a give application.


2020 ◽  
Vol 14 (27) ◽  
pp. 55-66
Author(s):  
Hugo Leonardo Murcia Gallo ◽  
Richard Lionel Luco Salman ◽  
David Ignacio Fuentes Montaña

The main objective of this study is to analyze the structural response of a boat during a slamming event using the Finite Element Method in a Small Water Area Twin Hull (SWATH) type boat.  In the mentioned load condition, the acceptance criteria established by a classification society must be fulfilled, taking into account the areas where this event affects the structure such as the junction deck, the pontoons and other structural members established by the standard, all this generated by the high pressure loads in the ship's structure in a very short period of time being an element of study in this type of vessels, as long as they are within the range of high speed vessels. Among the main results of this study were the deformations and stresses in the structure obtained under the reference parameters of the classification society.


2008 ◽  
Vol 367 ◽  
pp. 193-200
Author(s):  
Branko Grizelj ◽  
M. Plancak ◽  
Branimir Barisic

The paper analyses the process of simulation forward-backward extrusion. In metal forming industries, many products have to be formed in large numbers and with highly accurate dimensions. To save energy and material it is necessary to understand the behavior of material and to know the intermediate shapes of the formed parts and the mutual effects between tool and formed party during the forming process. These are normally based on numerical methods which take into account all physical conditions of the deformed material during the process. For this purpose, the finite element method has been developed in the past in different ways. The paper highlights the finite element simulation as a very useful technique in studying, where there is a generally close correlation in the load results obtained with finite elements method and those obtained experimentally.


2021 ◽  
pp. 49-54
Author(s):  
V.A. Ogorodov

Different ways of fixing of stepped thin-walled cylinders during honing are analyzed. The conditions for increasing the accuracy of hole machining are determined on the basis of unevenness of cylinder deformations from clamping forces and radial forces simulating cutting forces. The studies used the finite element method and the DEFORM-3D V6.1 software package. Keywords: honing, stepped thin-walled cylinder, hole, accuracy, fixing method, deformation, unevenness, DEFORM-3D V6.1 software package. [email protected]


2020 ◽  
Vol 0 (12) ◽  
pp. 10-16
Author(s):  
V.V. Avtaev ◽  
◽  
D. V. Grinevich ◽  
A. V. Zavodov

Yielding tests of VTI-4 alloy specimens have been carried out at temperature 1010 °C under conditions of high-speed loading. Based on the test results the modulus of elasticity as well as axial and radial residual deformation values in the end and central zones for each loading stage were determined. Fitting criteria for finite element simulation and the experiment are proposed with tracing VTI-4 alloy diagram deformation at temperature 1010 °C and strain rate of 2.5 sec–1. As a result of finite element simulation the relationship between the material structures obtained during high-speed yielding and the deflected modes in different zones was determined.


Sign in / Sign up

Export Citation Format

Share Document