scholarly journals The Properties of Shuffle Screw Dislocations in Semiconductors Silicon and Germanium

2015 ◽  
Vol 9 (1) ◽  
pp. 10-13 ◽  
Author(s):  
Huili Zhang ◽  
Chun Zhang ◽  
Chunhua Zeng ◽  
Lumei Tong

The dislocation widths, Peierls barriers and Peierls stresses for shuffle screw dislocations in diamond structure crystals, Si and Ge, have been calculated by the improved P-N theory. The widths are about 0.6b, where b is the Burgers vector. The Peierls barrier for shuffle screw dislocation in Si and Ge, is about 3.61~4.61meV/Å and 5.31~13.32meV/Å, respectively. The Peierls stress is about 0.28~0.33GPa and 0.31~0.53GPa, respectively. The calculated Peierls barriers and stresses are likely the results of shuffle screw dislocation with metastable core which is centered on the bond between two atoms.

2016 ◽  
Vol 258 ◽  
pp. 17-20
Author(s):  
Hideki Mori

The Peierls stress and barrier of a screw dislocation in body-centered cubic iron at finite temperature is investigated by using the free energy gradient method. The Peierls barrier is shown to decrease from 12 to 5 meV per unit length of the Burgers vector with increasing temperature from 0 to 400 K. The entropy term of the Peierls barrier is estimated to be 0.2kB. The Peierls stress also decreases from 900 to 400 MPa with increasing temperature from 0 to 300 K. The change in the Peierls stress due to the entropic effect is larger than that of the Peierls barrier because of thermal softening.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Lili Liu ◽  
Zhenya Meng ◽  
Gang Xu ◽  
Chenglin He ◽  
Xiaozhi Wu ◽  
...  

The image dislocation method is used to construct the governing equation of dislocations in nanofilms. The classical Peierls-Nabarro equation can be recovered when the thickness of nanofilm is taken to be infinite. In order to determine the core width and Peierls stress of dislocations, the unstable stacking fault energies of Al and Cu nanofilms are calculated via the first-principle methods. It is found that surface effect can increase the Peierls stresses of screw dislocations in Al and Cu nanofilms.


1996 ◽  
Vol 423 ◽  
Author(s):  
Jennifer Giocondi ◽  
Gregory S. Rohrer ◽  
Marek Skowronski ◽  
V. Balakrishna ◽  
G. Augustine ◽  
...  

AbstractThe growth surface of a 6H-SiC boule, grown by physical vapor transport, was examined using scanning force microscopy. The dimensions of surface/micropipe intersections and screw dislocation Burgers vectors have been determined from topographic data. All micropipes are positioned along the lines of super screw dislocations with a Burgers vectors of at least 4 times the c-axis repeat distance (15.2 Å). Perfect c-axis screw dislocations with Burgers vectors of only 15.2 Å are stable and do not have open cores. Measurements show that micropipe core radii, determined indirectly from the width of the craters formed at the surface/micropipe intersections, increase with the square of the dislocation Burgers vector.


2004 ◽  
Vol 70 (10) ◽  
Author(s):  
Ju Li ◽  
Cai-Zhuang Wang ◽  
Jin-Peng Chang ◽  
Wei Cai ◽  
Vasily V. Bulatov ◽  
...  

1997 ◽  
Vol 483 ◽  
Author(s):  
P. G. Neudeck ◽  
W. Huang ◽  
M. Dudley

AbstractIt is well-known that SiC wafer quality deficiencies are delaying the realization of outstandingly superior 4H-SiC power electronics. While efforts to date have centered on eradicating micropipes (i.e., hollow core super-screw dislocations with Burgers vector > 2c), 4H-SiC wafers and epilayers also contain elementary screw dislocations (i.e., Burgers vector = Ic with no hollow core) in densities on the order of thousands per cm2, nearly 100-fold micropipe densities. This paper describes an initial study into the impact of elementary screw dislocations on the reverse-bias current-voltage (I-V) characteristics of 4H-SiC p+n diodes. First, Synchrotron White Beam X-ray Topography (SWBXT) was employed to map the exact locations of elementary screw dislocations within small-area 4H-SiC p+n mesa diodes. Then the high-field reverse leakage and breakdown properties of these diodes were subsequently characterized on a probing station outfitted with a dark box and video camera. Most devices without screw dislocations exhibited excellent characteristics, with no detectable leakage current prior to breakdown, a sharp breakdown I-V knee, and no visible concentration of breakdown current. In contrast devices that contained at least one elementary screw dislocation exhibited a 5% to 35% reduction in breakdown voltage, a softer breakdown I-V knee, and visible microplasmas in which highly localized breakdown current was concentrated. The locations of observed breakdown microplasmas corresponded exactly to the locations of elementary screw dislocations identified by SWBXT mapping. While not as detrimental to SiC device performance as micropipes, the undesirable breakdown characteristics of elementary screw dislocations could nevertheless adversely affect the performance and reliability of 4H-SiC power devices.


2021 ◽  
Vol 10 (4) ◽  
Author(s):  
Nandagopal Manoj ◽  
Kevin Slagle ◽  
Wilbur Shirley ◽  
Xie Chen

The X-cube model, a prototypical gapped fracton model, was shown in Ref. [1] to have a foliation structure. That is, inside the 3+1 D model, there are hidden layers of 2+1 D gapped topological states. A screw dislocation in a 3+1 D lattice can often reveal nontrivial features associated with a layered structure. In this paper, we study the X-cube model on lattices with screw dislocations. In particular, we find that a screw dislocation results in a finite change in the logarithm of the ground state degeneracy of the model. Part of the change can be traced back to the effect of screw dislocations in a simple stack of 2+1 D topological states, hence corroborating the foliation structure in the model. The other part of the change comes from the induced motion of fractons or sub-dimensional excitations along the dislocation, a feature absent in the stack of 2+1D layers.


2020 ◽  
Vol 35 (30) ◽  
pp. 2050195
Author(s):  
Soroush Zare ◽  
Hassan Hassanabadi ◽  
Marc de Montigny

We examine the behavior of spin-zero bosons in an elastic medium which possesses a screw dislocation, which is a type of topological defect. Therefore, we solve analytically the Duffin–Kemmer–Petiau (DKP) oscillator for bosons in the presence of a screw dislocation with two types of potential functions: Cornell and linear-plus-cubic potential functions. For each of these functions, we analyze the impact of screw dislocations by determining the wave functions and the energy eigenvalues with the help of the Nikiforov–Uvarov method and Heun function.


Sign in / Sign up

Export Citation Format

Share Document