scholarly journals Thermal Decomposition Kinetics of Poly(L-lactic acid) after Heat Treatment

2015 ◽  
Vol 9 (1) ◽  
pp. 28-32
Author(s):  
Yan-Hua Cai ◽  
Yun-Chen Xie ◽  
Ying- Tang ◽  
Li-Sha Zhao

Thermal decomposition behavior of Poly(L-lactic acid) (PLLA) and PLLA composites after different heat treatment were investigated using thermogravimetric analysis. Firstly, the thermal decomposition results of neat PLLA showed that the decomposition of PLLA was a first-order kinetic reaction, and thermal decomposition kinetics indicated that the heat treatment significantly affected activation energy of thermal decomposition of PLLA. The measurement results also exhibited that the onset decomposition temperature of PLLA treated below 115°C was lower than that of the pristine PLLA. Then, the effect of additive CaCo3 on the thermal decomposition behavior of PLLA was evaluated. The addition of CaCo3 could significantly improve the crystallization performance of PLLA, but the CaCo3 did not change the decomposition trend of PLLA, and the thermal decomposition behavior of PLLA/CaCo3 composites after isothermal heat treatment was similar to that of PLLA. However, the thermal decomposition activation energy of PLLA/CaCo3 is lower than that of PLLA.

RSC Advances ◽  
2021 ◽  
Vol 11 (56) ◽  
pp. 35287-35299
Author(s):  
Sabrina Hanafi ◽  
Djalal Trache ◽  
Abderrahmane Mezroua ◽  
Hani Boukeciat ◽  
Redha Meziani ◽  
...  

A new co-crystal based on AN and HNTO has been developed and its thermal decomposition behavior through the incorporation of energetic coordination nanomaterials based on functionalized graphene oxide and cobalt has been elucidated.


2014 ◽  
Vol 983 ◽  
pp. 190-193
Author(s):  
Cai Yun Sun ◽  
Yong Li Yang ◽  
Ming Gao

Wood has been treated with amino resins and amino resins modified with phosphoric acid to impart flame retardancy. The thermal degradation of samples has been studied by thermogravimetry (TG) in air. From the resulting data, kinetic parameters for different stages of thermal degradation are obtained following the method of Broido. For the decomposition of wood and flame retardant wood, the activation energy is found to decrease from 122 to 72 kJmol-1.


2013 ◽  
Vol 641-642 ◽  
pp. 144-147 ◽  
Author(s):  
Ming Hua Chen ◽  
Tao Zhang ◽  
Wen Ping Chang ◽  
Xiao Biao Jia

The thermal decomposition kinetics of RDX at different rates was studied by thermogravimetric analyzer(TG) and the activation energy of RDX was calculated by distributed activation energy model. It is shown that the thermal decomposition processes of RDX were divided into three stages according to the TG curves, they are molten stage, thermal decomposition stage and eng stage. The activation energies of RDX are all between 124.34 and 181.48KJ•mol-1 in the thermal decomposition stage of non-monotonously increasing. The activation energy of RDX is 139.98 KJ•mol-1 in the molten stage, and the thermal decomposition stage is167.24KJ•mol-1.


2019 ◽  
Vol 956 ◽  
pp. 181-191
Author(s):  
Jian Lin Xu ◽  
Bing Xue Ma ◽  
Cheng Hu Kang ◽  
Cheng Cheng Xu ◽  
Zhou Chen ◽  
...  

The thermal decomposition kinetics of polybutylene terephthalate (PBT) and flame-retardant PBT (FR-PBT) were investigated by thermogravimetric analysis at various heating rates. The kinetic parameters were determined by using Kissinger, Flynn-Wall-Ozawa and Friedman methods. The y (α) and z (α) master plots were used to identify the thermal decomposition model. The results show that the rate of residual carbon of FR-PBT is higher than that of PBT and the maximum mass loss rate of FR-PBT is lower than that of PBT. The values of activation energy of PBT (208.71 kJ/mol) and FR-PBT (244.78 kJ/mol) calculated by Kissinger method were higher than those of PBT (PBT: 195.54 kJ/mol) and FR-PBT (FR-PBT: 196.00 kJ/mol) calculated by Flynn-Wall-Ozawa method and those of PBT and FR-PBT (PBT: 199.10 kJ/mol, FR-PBT: 206.03 kJ/mol) calculated by Friedman methods. There is a common thing that the values of activation energy of FR-PBT are higher than that of PBT in different methods. The thermal decomposition reaction models of the PBT and FR-PBT can be described by Avarami-Erofeyev model (A1).


Holzforschung ◽  
2017 ◽  
Vol 71 (3) ◽  
pp. 233-240 ◽  
Author(s):  
Ke-Chang Hung ◽  
Jyh-Horng Wu

Abstract Wood-SiO2 composites (WSiO2Cs) were prepared by means of the sol-gel process with methyltrimethoxysilane (MTMOS) as a reagent, and the physical properties, structure and thermal decomposition kinetics of the composites has been evaluated. The dimensional stability of the WSiO2Cs was better than that of unmodified wood, especially in terms of the weight percent gain (WPG), which achieved values up to 30%. The 29Si-NMR spectra show two different siloxane peaks (T2 and T3), which supports the theory about the formation of MTMOS network structures. Thermal decomposition experiments were also carried out in a TG analyzer under a nitrogen atmosphere. The apparent activation energy was determined according to the iso-conversional methods of Friedman, Flynn-Wall-Ozawa, modified Coats-Redfern, and Starink. The apparent activation energy between 10 and 70% conversion is 147–172, 170–291, 189–251, and 192–248 kJ mol−1 for wood and WSiO2Cs with WPGs of 10, 20, and 30%, respectively. However, the reaction order between 10 and 70% conversion calculated by the Avrami theory was 0.50–0.56, 0.35–0.45, 0.33–0.44, and 0.28–0.48. These results indicate that the dimensional and thermal stability of the wood could be effectively enhanced by MTMOS treatment.


Sign in / Sign up

Export Citation Format

Share Document