Investigation on Opening Sizes and Influencing Factors of the Connection with Opening on Beam Web of Steel Frames

2014 ◽  
Vol 8 (1) ◽  
pp. 9-13
Author(s):  
Li Bin

The connection with opening on beam web is analyzed by Finite Element Program ABAQOUS. The optimal opening sizes and location are determined under the static loads. The factors to influence the formation of plastic hinge in beams and columns withstand static load are considered. Conclusions are drawn that the formation position is not only related with the web height h, but also with flange width b. The result provides us with a theoretical basis for specific engineering practice.

2014 ◽  
Vol 501-504 ◽  
pp. 731-735
Author(s):  
Li Zhang ◽  
Kang Li

This paper analyzes the influence degree of related design parameters of wire-mesh frame wallboard on deformation through finite element program, providing theoretical basis for the design and test of steel wire rack energy-saving wallboard.


2014 ◽  
Vol 919-921 ◽  
pp. 183-187
Author(s):  
Ming Chen ◽  
Zhi Bin Feng ◽  
Zhou Zhou ◽  
Ya Long Wang ◽  
Qiang Zhang

Cold-formed lipped channel sections may fail in local, distortional and overall buckling under compression. With the development of computer technology, finite element analyses of these sections play increasing important roles in engineering practice for economic design and time-saving purpose. A kind of typical cold-formed lipped channel beam-column with varying load eccentricity was analyzed in this paper by using the finite element program of ANSYS to observe the buckling modes and load carrying capacities of the columns. All the results can be the reference for further studies.


Author(s):  
J Spence ◽  
D M Macfarlane ◽  
A S Tooth

The stress analysis of the flange problem is found to be sensitive to the way in which the component is modelled, particularly so when a finite element program is used to analyse the flange and bolt contact faces. The validity of a number of these finite element models are examined, by comparing the predicted maximum axial bending stress at the intersection of the taper-hub and the cylindrical vessel, with those measured on a large taper hub flange. It is found that a well-thought-through simple model can produce accurate results. In this type of flange it is considered that the magnitude of this stress is critical since, if the bending stress at this intersection reaches yield and subsequently a plastic hinge develops, then undue rotation of the flange could cause leakage. Using an appropriate finite element model, the development of plasticity is studied, from which it is shown that the use of a cylindrical shell yield surface provides a more realistic approach than the simple beam criterion which is unconservative despite its wide use in the existing pressure vessel standards.


2010 ◽  
Vol 146-147 ◽  
pp. 724-728
Author(s):  
Wen Juan Yao ◽  
Bao Lin Hu ◽  
Ting Chen Fang

Materials with different modulus in tension and compression have a wide application in engineering practice, especially the composite materials developed in recent years, which have properties of different tension-compression modulus. To exploring the general features of mechanical properties of structures with different modulus, the dimensionless equation of finite element was deduced for structure with different modulus, and corresponding finite element program was developed .the stresses of the cantilever beam by program of the theory with different modulus. The impacts on member stresses resulted from the change of structure size, external load and the ratio of different modulus are compared and analyzed. Finally, we have drawn a conclusion that the property of different modulus of the material is very important to its stress, and have given out suggestions on the optimization of state of structural stress.


2014 ◽  
Vol 501-504 ◽  
pp. 959-962
Author(s):  
Jiu Yang Li ◽  
Qing Feng

First, utilizing finite element program, this study analyzed the displacement of composite wall cladding in uniform distribution load. Second, the verification is carried out through experiment, then providing theoretical basis for calculating the stiffness of the composite wall cladding.


2021 ◽  
Vol 37 ◽  
pp. 205-215
Author(s):  
Heng Chen ◽  
Hongmei Cheng ◽  
Aibin Xu ◽  
Yi Xue ◽  
Weihong Peng

ABSTRACT The fracture field of coal and rock mass is the main channel for gas migration and accumulation. Exploring the evolution law of fracture field of coal and rock mass under the condition of drilling and slitting construction has important theoretical significance for guiding efficient gas drainage. The generation and evolution process of coal and rock fissures is also the development and accumulation process of its damage. Therefore, based on damage mechanics and finite element theory, the mathematical model is established. The damage variable of coal mass is defined by effective strain, the elastoplastic damage constitutive equation is established and the secondary development of finite element program is completed by FORTRAN language. Using this program, the numerical simulation of drilling and slitting construction of the 15-14120 mining face of Pingdingshan No. 8 Mine is carried out, and the effects of different single borehole diameters, different kerf widths and different kerf heights on the distribution area of surrounding coal fracture field and the degree of damage are studied quantitatively. These provide a theoretical basis for the reasonable determination of the slitting and drilling arrangement parameters at the engineering site.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Muhammad Auchar Zardari ◽  
Hans Mattsson ◽  
Sven Knutsson ◽  
Muhammad Shehzad Khalid ◽  
Maria V. S. Ask ◽  
...  

Much of the seismic activity of northern Sweden consists of micro-earthquakes occurring near postglacial faults. However, larger magnitude earthquakes do occur in Sweden, and earthquake statistics indicate that a magnitude 5 event is likely to occur once every century. This paper presents dynamic analyses of the effects of larger earthquakes on an upstream tailings dam at the Aitik copper mine in northern Sweden. The analyses were performed to evaluate the potential for liquefaction and to assess stability of the dam under two specific earthquakes: a commonly occurring magnitude 3.6 event and a more extreme earthquake of magnitude 5.8. The dynamic analyses were carried out with the finite element program PLAXIS using a recently implemented constitutive model called UBCSAND. The results indicate that the magnitude 5.8 earthquake would likely induce liquefaction in a limited zone located below the ground surface near the embankment dikes. It is interpreted that stability of the dam may not be affected due to the limited extent of the liquefied zone. Both types of earthquakes are predicted to induce tolerable magnitudes of displacements. The results of the postseismic slope stability analysis, performed for a state after a seismic event, suggest that the dam is stable during both the earthquakes.


1981 ◽  
Vol 17 (12) ◽  
pp. 1779-1789
Author(s):  
E. Haugeneder ◽  
W. Prochazka ◽  
P. Tavolato

Sign in / Sign up

Export Citation Format

Share Document