scholarly journals Fastener Scaffold Stability Analysis and Experimental Research Under Non-Uniform Distributed Load

2017 ◽  
Vol 11 (1) ◽  
pp. 873-886
Author(s):  
Dong Chen ◽  
Yuzhuo Wang ◽  
Xiping He

Introduction: An experiment was carried out on the basis of material nonlinearity, geometry nonlinearity and semi rigid fasteners for the internal force distribution and transfer rules of the scaffold. Methods: This paper presents results from a set of numerical studies on the influence of the random imperfection method, the interaction of various imperfections and the most disadvantageous stability limit load. Result and Conclusion: Data from numerical studies indicate that stress at the top of the vertical bar was larger within the scope of load; and the horizontal bar and brace participated in the work of the scaffold. The internal force that came through the two types of bars enabled us to realize the redistribution in every vertical bar in order to decrease the stress from the top to the bottom of the vertical bars and involve them in the work of the scaffold. Data from numerical studies also indicates that these imperfections all interact with each other and the load distribution also influences the scaffold’s stability.

2020 ◽  
Vol 90 (4) ◽  
pp. 38-47
Author(s):  
VL.I. KOLCHUNOV ◽  
◽  
D.V. MARTYNENKO ◽  

A computational model and the results of numerical studies of the structure of a platform joint in a reinforced concrete precast-monolithic frame of a building from panel-frame elements of industrial production are presented. Modeling of the plane stress state of the joint structure is carried out by a finite element scheme, using finite elements of different types and a nonlinear law of deformation to determine the design characteristics of reinforced concrete. The parameters of deformation of the platform joint structure at different loading levels, including stage-by-stage cracking and destruction, have been determined. The schemes of distribution and stress concentration zones in the characteristic sections of the platform joint are established when the distributed load is transferred from the frame of the panel-frame to the hollow-core floor panels and concrete for embedding the joint in the presence of a cavity in the frame frame for centering elements.


2017 ◽  
Vol 1 (2) ◽  
Author(s):  
Wang Jie

Abstract: The PC box girder Bridge with corrugated steel web, as a new kind of bridge structure, has different mechanical properties from that of the ordinary concrete box girder bridge. Due to the late development of the corrugated steel web pre-stressed box girder structure, the domestic experts have made little research on the transverse load distribution of PC box Girder Bridge with corrugated steel webs. Whether the method of calculating the transverse distribution coefficient in the classical box girder theory can be applied to the corrugated steel web composite box girder and how to further improve the calculation theory and method of the transverse load distribution of the steel box girder bridge need urther study. method of the transverse load distribution of the steel box girder bridge need further study.Based on the "traditional rigid jointed process and the programming ideas of the transverse distribution coefficient of corrugated steel web composite box girder of the "modified rigid jointed beam method".beam method" and the existing research, this paper proposes the "modified rigid-jointed beam method" in combination with the specific internal force distribution of corrugated steel web composite box girder. The computational scheme and formula of mechanics, the calculation process and the programming ideas of the transverse distribution coefficient of corrugated steel web composite box girder of the "modified rigid jointed beam method".


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Xingwei Xue ◽  
Meizhong Wu ◽  
Zhengwei Li ◽  
Peng Zhou

Moment and shear load distribution are important in bridge design. Most existing studies have focused on the distribution of girders under vehicle loading, neglecting the dead load distribution between the webs of multicell box-girders. Through the “Sum of Local Internal Forces” function, the shear force of each web in the multicell box-girder 3D finite element model was extracted and analysed using the dead load shear force distribution factor. The research parameters include the slope of the web, support condition, and cell number with respect to the dead load shear force distribution factor. The results indicate that the dead load shear distribution in the webs of multicell box-girders is uneven. The outermost inclined web bears a shear force greater than the average shear force, which must be considered in bridge design.


2016 ◽  
Vol 100 ◽  
pp. 259-282 ◽  
Author(s):  
Bahareh Ghotbi ◽  
Francisco González ◽  
József Kövecses ◽  
Jorge Angeles

2014 ◽  
Vol 622-623 ◽  
pp. 1117-1123
Author(s):  
Takahiro Ohashi ◽  
Wan Tong

In this study, the authors employ a multi-point die-support structure to hold the upper die for deep drawings in order to adjust the distribution of the blank holding force (BHF) so as to eliminate wrinkles. The developed multi-point support structure has 12 support cells (support units) between the upper die and the outer slide of a double-action press; the cells are metal cylinders working as springs. The support unit has a ball contact at the interface with the upper die, and the interface freely rotates and slides horizontally. The support unit has strain gauges on the side surface, and the bearing load at each unit can be determined, as well as the elastic deformation. The bearing load distribution is observed through a trial blow, and then the support units are manually relocated to better distribute the supporting points to create the appropriate BHF distribution. To demonstrate the efficiency of the suggested structure, the authors perform deep drawing with off-centered setting of a blank to create wrinkles intentionally. They then employ the multi-point die-support system, relocate the support units, and eliminate wrinkles.


2013 ◽  
Vol 834-836 ◽  
pp. 1382-1385
Author(s):  
Li Xiang ◽  
Zhu Feng ◽  
Zhai Qiu ◽  
Ruo Yin Zhang

The concept of arch longitudinal beam wharf was brought out in the contemporary shipping industry of China as a result of the conflict between traditional high-piled wharfs and the increasing size of freights. Different alignments of arch axis will lead to different internal force distributions and the most dangerous section. A series of equations for the arch axis are derived through the transformation of the exponential function under a 40-meter-long span. Based on the analysis of equations affected by the combined force of uniform load and concentrated load, it is providing reference for engineers and analysts with the internal force distribution under some commonly used axis and the location of the most dangerous section for the archs.


1989 ◽  
Vol 111 (1) ◽  
pp. 79-86
Author(s):  
R. J. Stango ◽  
R. H. Jungmann

A variational method is outlined for computing thrust bearing element loads on the basis of minimizing the potential energy of the system. The problem is formulated in terms of a polynomial displacement assumption for bearing elements. To illustrate the computational procedure, numerical studies are presented for a thrust bearing subjected to a range of load eccentricities. The variational approach is demonstrated to result in an accurate and efficient solution for bearing element load distributions. Excellent agreement is achieved when comparison is made to conventional methods of classical bearing theory for nominal load eccentricities, while superior performance is obtained when load eccentricities are considerably larger. Basic advantages of the variational formulation are discussed and an illustrative problem is presented which demonstrates extended capability of the variational method for examining the load distribution in thrust bearings.


2013 ◽  
Vol 351-352 ◽  
pp. 560-565
Author(s):  
Kao Zhong Zhao ◽  
Guang Yi Wang

Assembly box concrete hollow floor sructure is a new-style whole structure that are constituted by the a cross section of a concrete box composed of small prefabricated components (concrete superposition box) and a cast-in-place concrete rib beam.The internal force distribution law was analyzed in this paper, based on the static load experiment with a multi span column-supported assembly box concrete hollow floor.The findings prove that the prefabricated boxs and cast-in-situ concrete ribbed beams are able to form a whole to jointly bear external forces, that the internal force distribution law is basically the same with the solid cast-in-situ concrete floor with no beams, and that the floor structure can be simplified to the column strip and middle strip.The specific distribution ratios between the minus moment and the plus moment of the column strip and middle strip respectively are as follows. For the angel area floor(contianed edge beams), the ratio of midspan section is 0.537:0.463, the ratio of support section is 0.816:0.184; for the edge area floor(contianed edge beams), the ratio of midspan section is 0.51:0.49, the ratio of support section is 0.808:0.192; for the inner area floor, the ratio of midspan section is 0.55:0.45, the ratio of support section is 0.75:0.25.


Sign in / Sign up

Export Citation Format

Share Document