scholarly journals Estimating Soil Thermal Diffusivity Using Pedotransfer Functions with Nonlinear Regression

2018 ◽  
Vol 12 (1) ◽  
pp. 164-173
Author(s):  
Ahmed Yehia Mady ◽  
Evgeny Shein

Background and Objective:Pedotransfer Functions (PTFs) are widely used for estimating soil thermal diffusivity. Some attempts have been made to indirectly predict soil thermal diffusivity from the easy available fundamental soil physics properties. The aim of the work was to validate usage PTFs with Nonlinear Regression (NLR) for estimating soil thermal diffusivity (KD), moreover was to select the best predictor variables used for determination of PTFs.Materials and Methods:Soil thermal diffusivity was measured at different values of water content using Kondratieff method. The parameters of the quadratic equation, which described the relation between thermal diffusivity and water content, were determined by the fitting curve and using PTFs (exponential equations) based on soil physical properties. The Combination of different soil physical properties used as PTF model’s independent variables was tested. Three classes of PTFs were proposed using NLR to estimate KDwere: KDPTF-1 (Sand+ Silt+ Clay), KDPTF-2 (Sand+ Silt+ Clay + Bulk density), and KDPTF-3 (Sand+ Silt+ Clay+ Bulk density + Organic matter).Results:The best class of PTF could be used for calculating the parameters of the quadratic equation and soil thermal diffusivity, was KDPTF-1 which taking into account the percentage of sand, silt and clay, RMSE=2.94×10-8m2/s, and GMER =1.05.Conclusion:The quadratic and exponential equations were representing the nonlinear regression equations, which could be used for estimating soil thermal diffusivity at different values of water content from easily available data on soil texture, bulk density, and organic matter content.

2005 ◽  
Vol 36 (3) ◽  
pp. 235-244 ◽  
Author(s):  
Niels Henrik Jensen ◽  
Thomas Balstrøm ◽  
Henrik Breuning-Madsen

A database containing about 800 soil profiles located in a 7-km grid covering Denmark has been used to develop a set of regression equations of soil water content at pressure heads −1, −10, −100 and −1500 kPa versus particle size distribution, organic matter, CaCO3 and bulk density. One purpose was to elaborate equations based on soil parameters available in the Danish Soil Classification's texture database of particle size distribution and organic matter. It was also tested to see if inclusion of bulk density or CaCO3 content (in CaCO3-containing samples) as predictors or grouping in surface and subsurface horizons or textural classes improved the regression equations. Compared to existing Danish equations based on much fewer observations the accuracies of the new equations were better. The equations also predicted the soil water content at the measured pressure heads more accurately than the pedotransfer functions developed in HYPRES (Hydraulic Properties of European Soils). Introducing bulk density as a predictor improved the equation for the pressure head of −1 kPa but not for the lower ones. The grouping of data sets in surface and subsurface horizons or in textural classes did not improve the equations. Based on the equations a set of van Genuchten parameters for soil types in the Danish Soil Classification was elaborated. The prediction of soil water content, especially at pressure head −1 kPa, is more accurate using these van Genuchten parameters than using the pedotransfer functions developed in relation to the HYPRES database from a broad range of European soils.


2008 ◽  
Vol 88 (5) ◽  
pp. 761-774 ◽  
Author(s):  
J. A. P. Pollacco

Hydrological models require the determination of fitting parameters that are tedious and time consuming to acquire. A rapid alternative method of estimating the fitting parameters is to use pedotransfer functions. This paper proposes a reliable method to estimate soil moisture at -33 and -1500 kPa from soil texture and bulk density. This method reduces the saturated moisture content by multiplying it with two non-linear functions depending on sand and clay contents. The novel pedotransfer function has no restrictions on the range of the texture predictors and gives reasonable predictions for soils with bulk density that varies from 0.25 to 2.16 g cm-3. These pedotransfer functions require only five parameters for each pressure head. It is generally accepted that the introduction of organic matter as a predictor improves the outcomes; however it was found by using a porosity based pedotransfer model, using organic matter as a predictor only modestly improves the accuracy. The model was developed employing 18 559 samples from the IGBP-DIS soil data set for pedotransfer function development (Data and Information System of the International Geosphere Biosphere Programme) database that embodies all major soils across the United States of America. The function is reliable and performs well for a wide range of soils occurring in very dry to very wet climates. Climatical grouping of the IGBP-DIS soils was proposed (aquic, tropical, cryic, aridic), but the results show that only tropical soils require specific grouping. Among many other different non-climatical soil groups tested, only humic and vitric soils were found to require specific grouping. The reliability of the pedotransfer function was further demonstrated with an independent database from Northern Italy having heterogeneous soils, and was found to be comparable or better than the accuracy of other pedotransfer functions found in the literature. Key words: Pedotransfer functions, soil moisture, soil texture, bulk density, organic matter, grouping


2012 ◽  
Vol 29 (7) ◽  
pp. 933-943 ◽  
Author(s):  
Weinan Pan ◽  
R. P. Boyles ◽  
J. G. White ◽  
J. L. Heitman

Abstract Soil moisture has important implications for meteorology, climatology, hydrology, and agriculture. This has led to growing interest in development of in situ soil moisture monitoring networks. Measurement interpretation is severely limited without soil property data. In North Carolina, soil moisture has been monitored since 1999 as a routine parameter in the statewide Environment and Climate Observing Network (ECONet), but with little soils information available for ECONet sites. The objective of this paper is to provide soils data for ECONet development. The authors studied soil physical properties at 27 ECONet sites and generated a database with 13 soil physical parameters, including sand, silt, and clay contents; bulk density; total porosity; saturated hydraulic conductivity; air-dried water content; and water retention at six pressures. Soil properties were highly variable among individual ECONet sites [coefficients of variation (CVs) ranging from 12% to 80%]. This wide range of properties suggests very different behavior among sites with respect to soil moisture. A principal component analysis indicated parameter groupings associated primarily with soil texture, bulk density, and air-dried water content accounted for 80% of the total variance in the dataset. These results suggested that a few specific soil properties could be measured to provide an understanding of differences in sites with respect to major soil properties. The authors also illustrate how the measured soil properties have been used to develop new soil moisture products and data screening for the North Carolina ECONet. The methods, analysis, and results presented here have applications to North Carolina and for other regions with heterogeneous soils where soil moisture monitoring is valuable.


2018 ◽  
Vol 19 (2) ◽  
pp. 445-457 ◽  
Author(s):  
Xiaoting Xie ◽  
Yili Lu ◽  
Tusheng Ren ◽  
Robert Horton

Abstract Soil thermal diffusivity κ is an essential parameter for studying surface and subsurface heat transfer and temperature changes. It is well understood that κ mainly varies with soil texture, water content θ, and bulk density ρb, but few models are available to accurately quantify the relationship. In this study, an empirical model is developed for estimating κ from soil particle size distribution, ρb, and degree of water saturation Sr. The model parameters are determined by fitting the proposed equations to heat-pulse κ data for eight soils covering wide ranges of texture, ρb, and Sr. Independent evaluations with published κ data show that the new model describes the κ(Sr) relationship accurately, with root-mean-square errors less than 0.75 × 10−7 m2 s−1. The proposed κ(Sr) model also describes the responses of κ to ρb changes accurately in both laboratory and field conditions. The new model is also used successfully for predicting near-surface soil temperature dynamics using the harmonic method. The results suggest that this model provides useful estimates of κ from Sr, ρb, and soil texture.


Soil Research ◽  
1998 ◽  
Vol 36 (6) ◽  
pp. 899 ◽  
Author(s):  
D. P. C. Stewart ◽  
K. C. Cameron ◽  
I. S. Cornforth ◽  
J. R. Sedcole

A 2-year field trial determined the influence of applying spent mushroom substrate (SMS) on soil physical properties and the growth of 4 consecutive vegetable crops (sweetcorn, cabbage, potato, cabbage). Treatments comprised 0, 20, 40, and 80 t/ha of moist SMS, both with and without inorganic fertiliser, applied to each crop, giving a range of SMS rates up to 320 t/ha. SMS improved the environment for plant root growth by decreasing soil bulk density (by 0· 05-0·25 g/cm 3 at 100 mm depth), increasing aggregate stability (by 13-16%), reducing clod and surface crust formation (by 16-31 and 18-94%, respectively), increasing the infiltration rate (by 130-207 mm/h), increasing the water content of the soil (by 0-7% w/w), and reducing diurnal temperature changes. Some of these changes were not evident until repeated applications of 80 t/ha SMS had been made. Soil physical properties were related to crop yield, and soil physical properties’ principal components were related to crop principal components using regression analysis (r2 of 0·20-0·60 and 0·16-0·54, respectively). The soil physical properties that had the most influence on plant growth were specific to each crop and included bulk density, water content, surface crust cover, infiltration rate, and aggregate size distribution. Soil physical properties had a large influence on the potato yield irrespective of fertiliser use and on both cabbage crop yields when fertiliser was not used, but not on the sweetcorn yield (the first crop to be grown). The effect of changing soil physical properties on plant growth was most apparent when fertiliser was not used. This was because the improved physical properties increased plant yield (at least in part) because of increased plant nutrient uptake.


1992 ◽  
Vol 49 (7) ◽  
pp. 1431-1438 ◽  
Author(s):  
D. J. Rowan ◽  
J. Kalff ◽  
J. B. Rasmussen

An analysis of profundal sediment data from 83 north-temperate lakes shows that increasing inorganic sedimentation and exposure (or lake surface area) results in lower organic content and water content, and greater bulk density. Because sedimentation rates are unavailable for most lakes, we estimate sedimentation rates from readily available catchment sediment loads using a mass-balance model. The mass-balance estimate of sediment retention (per square metre of depositional zone) is an excellent predictor of measured inorganic sedimentation rates for a data set covering 19 lakes (R2 = 0.92). Multiple regressions are used to predict organic content, water content, and bulk density of profundal sediment from inorganic sedimentation rates and either exposure or lake surface area, which are surrogates for the energy of the depositional environment. These analyses explain 76, 74, and 66% of the between-lake variation in the three sediment parameters, respectively. Sediment organic content is not related to lake trophic status (chlorophyll a) and is negatively correlated with net organic matter sedimentation rates. The common occurrence of organic-rich sediments in oligotrophic shield lakes is, therefore, not a reflection of high organic matter inputs, but rather the extremely low inputs of mineral sediments to these lakes.


2020 ◽  
Vol 12 (4) ◽  
pp. 3189-3204
Author(s):  
Anne Hartmann ◽  
Markus Weiler ◽  
Theresa Blume

Abstract. Soil physical properties highly influence soil hydraulic properties, which define the soil hydraulic behavior. Thus, changes within these properties affect water flow paths and the soil water and matter balance. Most often these soil physical properties are assumed to be constant in time, and little is known about their natural evolution. Therefore, we studied the evolution of physical and hydraulic soil properties along two soil chronosequences in proglacial forefields in the Central Alps, Switzerland: one soil chronosequence developed on silicate and the other on calcareous parent material. Each soil chronosequence consisted of four moraines with the ages of 30, 160, 3000, and 10 000 years at the silicate forefield and 110, 160, 4900, and 13 500 years at the calcareous forefield. We investigated bulk density, porosity, loss on ignition, and hydraulic properties in the form of retention curves and hydraulic conductivity curves as well as the content of clay, silt, sand, and gravel. Samples were taken at three depths (10, 30, 50 cm) at six sampling sites at each moraine. Soil physical and hydraulic properties changed considerably over the chronosequence. Particle size distribution showed a pronounced reduction in sand content and an increase in silt and clay content over time at both sites. Bulk density decreased, and porosity increased during the first 10 millennia of soil development. The trend was equally present at both parent materials, but the reduction in sand and increase in silt content were more pronounced at the calcareous site. The organic matter content increased, which was especially pronounced in the topsoil at the silicate site. With the change in physical soil properties and organic matter content, the hydraulic soil properties changed from fast-draining coarse-textured soils to slow-draining soils with high water-holding capacity, which was also more pronounced in the topsoil at the silicate site. The data set presented in this paper is available at the online repository of the German Research Center for Geosciences (GFZ; Hartmann et al., 2020b). The data set can be accessed via the DOI https://doi.org/10.5880/GFZ.4.4.2020.004.


2013 ◽  
Vol 37 (2) ◽  
pp. 379-391 ◽  
Author(s):  
Alexandre Hugo Cezar Barros ◽  
Quirijn de Jong van Lier ◽  
Aline de Holanda Nunes Maia ◽  
Fábio Vale Scarpare

Pedotransfer functions (PTF) were developed to estimate the parameters (α, n, θr and θs) of the van Genuchten model (1980) to describe soil water retention curves. The data came from various sources, mainly from studies conducted by universities in Northeast Brazil, by the Brazilian Agricultural Research Corporation (Embrapa) and by a corporation for the development of the São Francisco and Parnaíba river basins (Codevasf), totaling 786 retention curves, which were divided into two data sets: 85 % for the development of PTFs, and 15 % for testing and validation, considered independent data. Aside from the development of general PTFs for all soils together, specific PTFs were developed for the soil classes Ultisols, Oxisols, Entisols, and Alfisols by multiple regression techniques, using a stepwise procedure (forward and backward) to select the best predictors. Two types of PTFs were developed: the first included all predictors (soil density, proportions of sand, silt, clay, and organic matter), and the second only the proportions of sand, silt and clay. The evaluation of adequacy of the PTFs was based on the correlation coefficient (R) and Willmott index (d). To evaluate the PTF for the moisture content at specific pressure heads, we used the root mean square error (RMSE). The PTF-predicted retention curve is relatively poor, except for the residual water content. The inclusion of organic matter as a PTF predictor improved the prediction of parameter a of van Genuchten. The performance of soil-class-specific PTFs was not better than of the general PTF. Except for the water content of saturated soil estimated by particle size distribution, the tested models for water content prediction at specific pressure heads proved satisfactory. Predictions of water content at pressure heads more negative than -0.6 m, using a PTF considering particle size distribution, are only slightly lower than those obtained by PTFs including bulk density and organic matter content.


Sign in / Sign up

Export Citation Format

Share Document