scholarly journals An Approach to Early Diagnosis of Pneumonia on Individual Radiographs based on the CNN Information Technology

2021 ◽  
Vol 14 (1) ◽  
pp. 93-107
Author(s):  
Pavlo Radiuk ◽  
Olexander Barmak ◽  
Iurii Krak

Aim: This study investigates the topology of convolutional neural networks and proposes an information technology for the early detection of pneumonia in X-rays. Background: For the past decade, pneumonia has been one of the most widespread respiratory diseases. Every year, a significant part of the world's population suffers from pneumonia, which leads to millions of deaths worldwide. Inflammation occurs rapidly and usually proceeds in severe forms. Thus, early detection of the disease plays a critical role in its successful treatment. Objective: The most operating means of diagnosing pneumonia is the chest X-ray, which produces radiographs. Automated diagnostics using computing devices and computer vision techniques have become beneficial in X-ray image analysis, serving as an ancillary decision-making system. Nonetheless, such systems require continuous improvement for individual patient adjustment to ensure a successful, timely diagnosis. Methods: Nowadays, artificial neural networks serve as a promising solution for identifying pneumonia in radiographs. Despite the high level of recognition accuracy, neural networks have been perceived as black boxes because of the unclear interpretation of their performance results. Altogether, an insufficient explanation for the early diagnosis can be perceived as a severe negative feature of automated decision-making systems, as the lack of interpretation results may negatively affect the final clinical decision. To address this issue, we propose an approach to the automated diagnosis of early pneumonia, based on the classification of radiographs with weakly expressed disease features. Results: An effective spatial convolution operation with several dilated rates, combining various receptive feature fields, was used in convolutional layers to detect and analyze visual deviations in the X-ray image. Due to applying the dilated convolution operation, the network avoids significant losses of objects' spatial information providing relatively low computational costs. We also used transfer training to overcome the lack of data in the early diagnosis of pneumonia. An image analysis strategy based on class activation maps was used to interpret the classification results, critical for clinical decision making. Conclusion: According to the computational results, the proposed convolutional architecture may be an excellent solution for instant diagnosis in case of the first suspicion of early pneumonia.

2010 ◽  
Vol 13 (04) ◽  
pp. 197-201 ◽  
Author(s):  
Lior Shamir ◽  
David T. Felson ◽  
Luigi Ferrucci ◽  
Ilya G. Goldberg

The detection of knee osteoarthritis (OA) is a subjective task, and even two highly experienced and well-trained readers might not always agree on a specific case. This problem is noticeable in OA population studies, in which different scoring projects provide significantly different scores for the same knee X-rays. Here we propose a method for quantitative assessment and comparison of knee X-ray scoring projects in OA population studies. The method works by applying an image analysis method that automatically detects OA in knee X-ray images, and comparing the consistency of the scores when using each of the scoring projects as "gold standard." The method was applied to compare the osteoarthritis initiative (OAI) clinic reading derived Kellgren and Lawrence (K&L) scores to central reading, and showed that when using the derived K&L scores the automatic image analysis method was able to accurately differentiate between healthy joints and moderate OA joints in ~70% of the cases. When the OAI central reading scores were used as gold standard, the detection accuracy was elevated to ~77%. These results show that the OAI central readings scores are more consistent with the X-rays, indicating that the central reading better reflects the radiographic features associated with OA, compared to the OAI K&L scores derived from clinic readings.


2006 ◽  
Vol 92 (3) ◽  
pp. 118-120
Author(s):  
S. Warwick ◽  
J. E. Smith ◽  
I. Higginson

AbstractA case is presented where an incidental finding on a trauma radiograph led to early diagnosis of a potentially life-threatening tumour, highlighting the need to be vigilant when interpreting X-rays.


2009 ◽  
Vol 2009 ◽  
pp. 1-12 ◽  
Author(s):  
Rosalia Leonardi ◽  
Daniela Giordano ◽  
Francesco Maiorana

Several efforts have been made to completely automate cephalometric analysis by automatic landmark search. However, accuracy obtained was worse than manual identification in every study. The analogue-to-digital conversion of X-ray has been claimed to be the main problem. Therefore the aim of this investigation was to evaluate the accuracy of the Cellular Neural Networks approach for automatic location of cephalometric landmarks on softcopy of direct digital cephalometric X-rays. Forty-one, direct-digital lateral cephalometric radiographs were obtained by a Siemens Orthophos DS Ceph and were used in this study and 10 landmarks (N, A Point, Ba, Po, Pt, B Point, Pg, PM, UIE, LIE) were the object of automatic landmark identification. The mean errors and standard deviations from the best estimate of cephalometric points were calculated for each landmark. Differences in the mean errors of automatic and manual landmarking were compared with a 1-way analysis of variance. The analyses indicated that the differences were very small, and they were found at most within 0.59 mm. Furthermore, only few of these differences were statistically significant, but differences were so small to be in most instances clinically meaningless. Therefore the use of X-ray files with respect to scanned X-ray improved landmark accuracy of automatic detection. Investigations on softcopy of digital cephalometric X-rays, to search more landmarks in order to enable a complete automatic cephalometric analysis, are strongly encouraged.


Author(s):  
Sarah Badr AlSumairi ◽  
Mohamed Maher Ben Ismail

Pneumonia is an infectious disease of the lungs. About one third to one half of pneumonia cases are caused by bacteria. Early diagnosis is a critical factor for a successful treatment process. Typically, the disease can be diagnosed by a radiologist using chest X-ray images. In fact, chest X-rays are currently the best available method for diagnosing pneumonia. However, the recognition of pneumonia symptoms is a challenging task that relies on the availability of expert radiologists. Such “human” diagnosis can be inaccurate and subjective due to lack of clarity and erroneous decision. Moreover, the error can increase more if the physician is requested to analyze tens of X-rays within a short period of time. Therefore, Computer-Aided Diagnosis (CAD) systems were introduced to support and assist physicians and make their efforts more productive. In this paper, we investigate, design, implement and assess customized Convolutional Neural Networks to overcome the image-based Pneumonia classification problem. Namely, ResNet-50 and DenseNet-161 models were inherited to design customized deep network architecture and improve the overall pneumonia classification accuracy. Moreover, data augmentation was deployed and associated with standard datasets to assess the proposed models. Besides, standard performance measures were used to validate and evaluate the proposed system.


Author(s):  
Ken J. Farion ◽  
Michael J. Hine ◽  
Wojtek Michalowski ◽  
Szymon Wilk

Clinical decision-making is a complex process that is reliant on accurate and timely information. Clinicians are dependent (or should be dependent) on massive amounts of information and knowledge to make decisions that are in the best interest of the patient. Increasingly, information technology (IT) solutions are being used as a knowledge transfer mechanism to ensure that clinicians have access to appropriate knowledge sources to support and facilitate medical decision making. One particular class of IT that the medical community is showing increased interest in is clinical decision support systems (CDSSs).


Angiology ◽  
2000 ◽  
Vol 51 (12) ◽  
pp. 1021-1025 ◽  
Author(s):  
Apostolos Karavidas ◽  
Evangellos Matsakas ◽  
George Lazaros ◽  
Fotis Panou ◽  
Manolis Foukarakis ◽  
...  

2021 ◽  
Vol 11 (23) ◽  
pp. 11185
Author(s):  
Zhi-Peng Jiang ◽  
Yi-Yang Liu ◽  
Zhen-En Shao ◽  
Ko-Wei Huang

Image recognition has been applied to many fields, but it is relatively rarely applied to medical images. Recent significant deep learning progress for image recognition has raised strong research interest in medical image recognition. First of all, we found the prediction result using the VGG16 model on failed pneumonia X-ray images. Thus, this paper proposes IVGG13 (Improved Visual Geometry Group-13), a modified VGG16 model for classification pneumonia X-rays images. Open-source thoracic X-ray images acquired from the Kaggle platform were employed for pneumonia recognition, but only a few data were obtained, and datasets were unbalanced after classification, either of which can result in extremely poor recognition from trained neural network models. Therefore, we applied augmentation pre-processing to compensate for low data volume and poorly balanced datasets. The original datasets without data augmentation were trained using the proposed and some well-known convolutional neural networks, such as LeNet AlexNet, GoogLeNet and VGG16. In the experimental results, the recognition rates and other evaluation criteria, such as precision, recall and f-measure, were evaluated for each model. This process was repeated for augmented and balanced datasets, with greatly improved metrics such as precision, recall and F1-measure. The proposed IVGG13 model produced superior outcomes with the F1-measure compared with the current best practice convolutional neural networks for medical image recognition, confirming data augmentation effectively improved model accuracy.


Sign in / Sign up

Export Citation Format

Share Document