The use of plant fibers for oligosaccharide production with libraries constructed by combinatorial enzyme technology

2021 ◽  
Vol 11 ◽  
Author(s):  
Dominic W. S. Wong

: Combinatorial chemistry involves the chemical or biological synthesis of libraries of the diverse structural population of a template molecule and the screening for the variants expressing desirable target properties. The approach has been a focus of research activity in modern drug discovery and biotechnology for accelerating the discovery and development of novel therapeutic and bioactive compounds. This review describes the application of combinatorial chemistry in enzyme technology as a novel technique and invention developed in our laboratory to construct oligosaccharide libraries in the conversion of plant fibers. The theory, mechanism, development, and application of this combinatorial enzyme approach are presented for the first time. The potential food and non-food uses of oligosaccharides are described. Citrus pectin and wheat insoluble fiber have been used as substrates for combinatorial enzyme reactions. Generation of libraries of structural variants of pectic oligosaccharides (oligoGalA) and feruloyl oligosaccharides (FOS) demonstrates the feasibility and usefulness of the technique in the transformation of plant biomass to value-added products.

2020 ◽  
Vol 86 (7) ◽  
Author(s):  
Isaac Cann ◽  
Gabriel V. Pereira ◽  
Ahmed M. Abdel-Hamid ◽  
Heejin Kim ◽  
Daniel Wefers ◽  
...  

ABSTRACT Renewable fuels have gained importance as the world moves toward diversifying its energy portfolio. A critical step in the biomass-to-bioenergy initiative is deconstruction of plant cell wall polysaccharides to their unit sugars for subsequent fermentation to fuels. To acquire carbon and energy for their metabolic processes, diverse microorganisms have evolved genes encoding enzymes that depolymerize polysaccharides to their carbon/energy-rich building blocks. The microbial enzymes mostly target the energy present in cellulose, hemicellulose, and pectin, three major forms of energy storage in plants. In the effort to develop bioenergy as an alternative to fossil fuel, a common strategy is to harness microbial enzymes to hydrolyze cellulose to glucose for fermentation to fuels. However, the conversion of plant biomass to renewable fuels will require both cellulose and hemicellulose, the two largest components of the plant cell wall, as feedstock to improve economic feasibility. Here, we explore the enzymes and strategies evolved by two well-studied bacteria to depolymerize the hemicelluloses xylan/arabinoxylan and mannan. The sets of enzymes, in addition to their applications in biofuels and value-added chemical production, have utility in animal feed enzymes, a rapidly developing industry with potential to minimize adverse impacts of animal agriculture on the environment.


2012 ◽  
Vol 84 (9) ◽  
pp. 1837-1846 ◽  
Author(s):  
Vanderlan da Silva Bolzani ◽  
Marilia Valli ◽  
Marcos Pivatto ◽  
Cláudio Viegas

Natural products are the inspiration for many valuable therapeutic agents and attest to biodiversity being a rich source of new molecular structures. Their value as templates for medicinal chemistry remains undisputed, even after the growth of the combinatorial chemistry era. Tropical environments, such as Brazilian biomes, offer a particularly rich potential for biologically active compounds with unique structures and continue to contribute toward modern drug discovery. Our bioprospecting of plant species of the Cerrado and Atlantic Forest biomes has yielded promising bioactive secondary metabolites, and we describe some of these molecules and semisynthetic derivatives as potential acetylcholinesterase (AChE) inhibitors.


ChemInform ◽  
2008 ◽  
Vol 39 (38) ◽  
Author(s):  
J. Phillip Kennedy ◽  
Lyndsey Williams ◽  
Thomas M. Bridges ◽  
R. Nathan Daniels ◽  
David Weaver ◽  
...  

Author(s):  
Tania Chroumpi ◽  
Mao Peng ◽  
Lye Meng Markillie ◽  
Hugh D. Mitchell ◽  
Carrie D. Nicora ◽  
...  

The filamentous ascomycete Aspergillus niger has received increasing interest as a cell factory, being able to efficiently degrade plant cell wall polysaccharides as well as having an extensive metabolism to convert the released monosaccharides into value added compounds. The pentoses D-xylose and L-arabinose are the most abundant monosaccharides in plant biomass after the hexose D-glucose, being major constituents of xylan, pectin and xyloglucan. In this study, the influence of selected pentose catabolic pathway (PCP) deletion strains on growth on plant biomass and re-routing of sugar catabolism was addressed to gain a better understanding of the flexibility of this fungus in using plant biomass-derived monomers. The transcriptome, metabolome and proteome response of three PCP mutant strains, ΔlarAΔxyrAΔxyrB, ΔladAΔxdhAΔsdhA and ΔxkiA, grown on wheat bran (WB) and sugar beet pulp (SBP), was evaluated. Our results showed that despite the absolute impact of these PCP mutations on pure pentose sugars, they are not as critical for growth of A. niger on more complex biomass substrates, such as WB and SBP. However, significant phenotypic variation was observed between the two biomass substrates, but also between the different PCP mutants. This shows that the high sugar heterogeneity of these substrates in combination with the high complexity and adaptability of the fungal sugar metabolism allow for activation of alternative strategies to support growth.


2021 ◽  
Author(s):  
Cristina Mihaela Nicolescu ◽  
Marius Bumbac ◽  
Cristiana Radulescu ◽  
Lavinia Claudia Buruleanu ◽  
Radu Lucian Olteanu ◽  
...  

The use of natural ingredients with active functions has been intensively studied in the last years, as a consequence to consumer preferences for organic products. Application of circular economy principles determined a significant research activity in the viticulture field. The use or re-use of vines parts for so-called nutraceuticals or other consumer-goods applications, are basically centered on their phytochemical and microbiological characterization. Eurostat updates ranks Romania fifth among the EU member states, with a total area under vines of 183,717 hectares. Characterization of four Vitis vinifera L. varieties, out of which one pure Romanian variety (Feteasca Neagra), cultivated in organic and conventional vineyards, together with pedoclimatic conditions have been provided. Data on phytochemical parameters and antimicrobial activity of extracts obtained from different anatomic parts of grapes were included. Analytical protocols and techniques applied were presented, together with data and results interpretation. Several chemometric algorithms have been used as complementary tools for interpretation of the instrumental analytical data.


Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 969
Author(s):  
Phawadee Buathong ◽  
Nassapat Boonvitthya ◽  
Gilles Truan ◽  
Warawut Chulalaksananukul

Biotransformation of fatty acids from renewable wastewater as feedstock to value-added chemicals is a fascinating commercial opportunity. α,ω-Dicarboxylic acids (DCAs) are building blocks in many industries, such as polymers, cosmetic intermediates, and pharmaceuticals, and can be obtained by chemical synthesis under extreme conditions. However, biological synthesis can replace the traditional chemical synthesis using cytochrome P450 enzymes to oxidize fatty acids to DCAs. Saccharomyces cerevisiae BY(2R)/pYeDP60-CYP52A17SS (BCM), a transgenic strain expressing the galactose-inducible CYP52A17SS cytochrome P450 enzyme, was able to grow in a coconut milk factory wastewater (CCW) medium and produced 12-hydroxydodecanoic acid (HDDA) and 1,12-dodecanedioic acid (DDA). The supplementation of CCW with 10 g/L yeast extract and 20 g/L peptone (YPCCW) markedly increased the yeast growth rate and the yields of 12-HDDA and 1,12-DDA, with the highest levels of approximately 60 and 38 µg/L, respectively, obtained at 30 °C and pH 5. The incubation temperature and medium pH strongly influenced the yeast growth and 1,12-DDA yield, with the highest 1,12-DDA formation at 30 °C and pH 5–5.5. Hence, the S. cerevisiae BCM strain can potentially be used for producing value-added products from CCW.


2008 ◽  
Vol 10 (3) ◽  
pp. 345-354 ◽  
Author(s):  
J. Phillip Kennedy ◽  
Lyndsey Williams ◽  
Thomas M. Bridges ◽  
R. Nathan Daniels ◽  
David Weaver ◽  
...  

2017 ◽  
Vol 19 (5) ◽  
pp. 1285-1296 ◽  
Author(s):  
A. Teklay ◽  
G. Gebeyehu ◽  
T. Getachew ◽  
T. Yaynshet ◽  
T. P. Sastry

2020 ◽  
Vol 2 (1) ◽  
pp. 77

Bioconversion of renewable lignocellulosic biomass to biofuel and value-added products is globally gaining significant importance. Lignocellulosic wastes are the most promising feedstock considering its great availability and low cost. The biomass conversion process involves mainly two steps: hydrolysis of cellulose in the lignocellulosic biomass to produce reducing sugars and fermentation of the sugars to ethanol and other bioproducts. However, sugars necessary for fermentation are trapped inside the recalcitrant structure of the lignocellulose. Hence, pretreatment of lignocellulosic wastes is always necessary to alter and/or remove the surrounding matrix of lignin and hemicelluloses in order to improve the hydrolysis of cellulose. These pretreatments cause physical and/or chemical changes in the plant biomass in order to achieve this result. Each pretreatment has a specific effect on the cellulose, hemicellulose, and lignin fraction. Thus, the pretreatment methods and conditions should be chosen according to the process configuration selected for the subsequent hydrolysis steps. In general, pretreatment methods can be classified into four categories, including physical, physicochemical, chemical, and biological pretreatment. Bioresource utilization of biopolymeric materials has now gained recent attention. Cellulose was extracted from water hyacinth by acid, alkali treatment & extracted cellulose was grafted with curcumin, pesticide, grape juice, magnetorheological fluid, and the grafted composite material was evaluated for release of respective grafted materials. In the present study, a polymer extracted from water hyacinth was evaluated for various applications. The present study would suggest the possible utilization of water hyacinth composite as the biomaterial for diverse applications.


Sign in / Sign up

Export Citation Format

Share Document