scholarly journals Whole-Cell Biotransformation of 1,12-Dodecanedioic Acid from Coconut Milk Factory Wastewater by Recombinant CYP52A17SS Expressing Saccharomyces cerevisiae

Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 969
Author(s):  
Phawadee Buathong ◽  
Nassapat Boonvitthya ◽  
Gilles Truan ◽  
Warawut Chulalaksananukul

Biotransformation of fatty acids from renewable wastewater as feedstock to value-added chemicals is a fascinating commercial opportunity. α,ω-Dicarboxylic acids (DCAs) are building blocks in many industries, such as polymers, cosmetic intermediates, and pharmaceuticals, and can be obtained by chemical synthesis under extreme conditions. However, biological synthesis can replace the traditional chemical synthesis using cytochrome P450 enzymes to oxidize fatty acids to DCAs. Saccharomyces cerevisiae BY(2R)/pYeDP60-CYP52A17SS (BCM), a transgenic strain expressing the galactose-inducible CYP52A17SS cytochrome P450 enzyme, was able to grow in a coconut milk factory wastewater (CCW) medium and produced 12-hydroxydodecanoic acid (HDDA) and 1,12-dodecanedioic acid (DDA). The supplementation of CCW with 10 g/L yeast extract and 20 g/L peptone (YPCCW) markedly increased the yeast growth rate and the yields of 12-HDDA and 1,12-DDA, with the highest levels of approximately 60 and 38 µg/L, respectively, obtained at 30 °C and pH 5. The incubation temperature and medium pH strongly influenced the yeast growth and 1,12-DDA yield, with the highest 1,12-DDA formation at 30 °C and pH 5–5.5. Hence, the S. cerevisiae BCM strain can potentially be used for producing value-added products from CCW.

2002 ◽  
Vol 128 (2) ◽  
pp. 615-624 ◽  
Author(s):  
Edgar B. Cahoon ◽  
Kevin G. Ripp ◽  
Sarah E. Hall ◽  
Brian McGonigle

2009 ◽  
Vol 75 (22) ◽  
pp. 7205-7211 ◽  
Author(s):  
Ken Ukibe ◽  
Keisuke Hashida ◽  
Nobuyuki Yoshida ◽  
Hiroshi Takagi

ABSTRACT The red carotenoid astaxanthin possesses higher antioxidant activity than other carotenoids and has great commercial potential for use in the aquaculture, pharmaceutical, and food industries. In this study, we produced astaxanthin in the budding yeast Saccharomyces cerevisiae by introducing the genes involved in astaxanthin biosynthesis of carotenogenic microorganisms. In particular, expression of genes of the red yeast Xanthophyllomyces dendrorhous encoding phytoene desaturase (crtI product) and bifunctional phytoene synthase/lycopene cyclase (crtYB product) resulted in the accumulation of a small amount of β-carotene in S. cerevisiae. Overexpression of geranylgeranyl pyrophosphate (GGPP) synthase from S. cerevisiae (the BTS1 gene product) increased the intracellular β-carotene levels due to the accelerated conversion of farnesyl pyrophosphate to GGPP. Introduction of the X. dendrorhous crtS gene, encoding astaxanthin synthase, assumed to be the cytochrome P450 enzyme, did not lead to astaxanthin production. However, coexpression of CrtS with X. dendrorhous CrtR, a cytochrome P450 reductase, resulted in the accumulation of a small amount of astaxanthin. In addition, the β-carotene-producing yeast cells transformed by the bacterial genes crtW and crtZ, encoding β-carotene ketolase and hydroxylase, respectively, also accumulated astaxanthin and its intermediates, echinenone, canthaxanthin, and zeaxanthin. Interestingly, we found that these ketocarotenoids conferred oxidative stress tolerance on S. cerevisiae cells. This metabolic engineering has potential for overproduction of astaxanthin and breeding of novel oxidative stress-tolerant yeast strains.


2018 ◽  
Vol 475 (4) ◽  
pp. 705-722 ◽  
Author(s):  
Stella A. Child ◽  
Elise F. Naumann ◽  
John B. Bruning ◽  
Stephen G. Bell

Members of the cytochrome P450 monooxygenase family CYP268 are found across a broad range of Mycobacterium species including the pathogens Mycobacterium avium, M. colombiense, M. kansasii, and M. marinum. CYP268A2, from M. marinum, which is the first member of this family to be studied, was purified and characterised. CYP268A2 was found to bind a variety of substrates with high affinity, including branched and straight chain fatty acids (C10–C12), acetate esters, and aromatic compounds. The enzyme was also found to bind phenylimidazole inhibitors but not larger azoles, such as ketoconazole. The monooxygenase activity of CYP268A2 was efficiently reconstituted using heterologous electron transfer partner proteins. CYP268A2 hydroxylated geranyl acetate and trans-pseudoionone at a terminal methyl group to yield (2E,6E)-8-hydroxy-3,7-dimethylocta-2,6-dien-1-yl acetate and (3E,5E,9E)-11-hydroxy-6,10-dimethylundeca-3,5,9-trien-2-one, respectively. The X-ray crystal structure of CYP268A2 was solved to a resolution of 2.0 Å with trans-pseudoionone bound in the active site. The overall structure was similar to that of the related phytanic acid monooxygenase CYP124A1 enzyme from Mycobacterium tuberculosis, which shares 41% sequence identity. The active site is predominantly hydrophobic, but includes the Ser99 and Gln209 residues which form hydrogen bonds with the terminal carbonyl group of the pseudoionone. The structure provided an explanation on why CYP268A2 shows a preference for shorter substrates over the longer chain fatty acids which bind to CYP124A1 and the selective nature of the catalysed monooxygenase activity.


2019 ◽  
Author(s):  
Thomas Siemon ◽  
Zhangqian Wang ◽  
Guangkai Bian ◽  
Tobias Seitz ◽  
Ziling Ye ◽  
...  

Herein, we report the semisynthetic production of the potent transient receptor potential canonical (TRPC) channel agonist (−)-englerin A (EA), using guaia-6,10(14)-diene as the starting material. Guaia-6,10(14)-diene was systematically engineered in Escherichia coli and Saccharomyces cerevisiae using the CRISPR/Cas9 system and produced with high titers. This provided us the opportunity to execute a concise chemical synthesis of EA and the two related guaianes (−)-oxyphyllol and (+)-orientalol E. The potentially scalable approach combines the advantages of synthetic biology and chemical synthesis and provides an efficient and economical method for producing EA as well as its analogs.


2019 ◽  
Author(s):  
Thomas Siemon ◽  
Zhangqian Wang ◽  
Guangkai Bian ◽  
Tobias Seitz ◽  
Ziling Ye ◽  
...  

Herein, we report the semisynthetic production of the potent transient receptor potential canonical (TRPC) channel agonist (−)-englerin A (EA), using guaia-6,10(14)-diene as the starting material. Guaia-6,10(14)-diene was systematically engineered in Escherichia coli and Saccharomyces cerevisiae using the CRISPR/Cas9 system and produced with high titers. This provided us the opportunity to execute a concise chemical synthesis of EA and the two related guaianes (−)-oxyphyllol and (+)-orientalol E. The potentially scalable approach combines the advantages of synthetic biology and chemical synthesis and provides an efficient and economical method for producing EA as well as its analogs.


Author(s):  
Maxim Kuzin ◽  
Franziskos Xepapadakos ◽  
Isabel Scharrer ◽  
Marc Augsburger ◽  
Chin‐Bin Eap ◽  
...  

LWT ◽  
2021 ◽  
pp. 111925
Author(s):  
Rodica Mărgăoan ◽  
Aslı Özkök ◽  
Şaban Keskin ◽  
Nazlı Mayda ◽  
Adriana Cristina Urcan ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yu Gao ◽  
Yan Sun ◽  
Huiling Gao ◽  
Ying Chen ◽  
Xiaoqing Wang ◽  
...  

Abstract Background Engineering triacylglycerol (TAG) accumulation in vegetative tissues of non-food crops has become a promising way to meet our increasing demand for plant oils, especially the renewable production of biofuels. The most important target modified in this regard is diacylglycerol acyltransferase (DGAT) enzyme responsible for the final rate-limiting step in TAG biosynthesis. Cyperus esculentus is a unique plant largely accumulating oleic acid-enriched oil in its underground tubers. We speculated that DGAT derived from such oil-rich tubers could function more efficiently than that from oleaginous seeds in enhancing oil storage in vegetative tissues of tobacco, a high-yielding biomass crops. Results Three CeDGAT genes namely CeDGAT1, CeDGAT2-1 and CeDGAT2-2 were identified in C. esculentus by mining transcriptome of developing tubers. These CeDGATs were expressed in tissues tested, with CeDGAT1 highly in roots, CeDGAT2-1 abundantly in leaves, and CeDGAT2-2 predominantly in tubers. Notably, CeDGAT2-2 expression pattern was in accordance with oil dynamic accumulation during tuber development. Overexpression of CeDGAT2-2 functionally restored TAG biosynthesis in TAG-deficient yeast mutant H1246. Oleic acid level was significantly increased in CeDGAT2-2 transgenic yeast compared to the wild-type yeast and ScDGA1-expressed control under culture with and without feeding of exogenous fatty acids. Overexpressing CeDGAT2-2 in tobacco led to dramatic enhancements of leafy oil by 7.15- and 1.7-fold more compared to the wild-type control and plants expressing Arabidopsis seed-derived AtDGAT1. A substantial change in fatty acid composition was detected in leaves, with increase of oleic acid from 5.1% in the wild type to 31.33% in CeDGAT2-2-expressed tobacco and accompanied reduction of saturated fatty acids. Moreover, the elevated accumulation of oleic acid-enriched TAG in transgenic tobacco exhibited no significantly negative impact on other agronomic traits such as photosynthesis, growth rates and seed germination except for small decline of starch content. Conclusions The present data indicate that CeDGAT2-2 has a high enzyme activity to catalyze formation of TAG and a strong specificity for oleic acid-containing substrates, providing new insights into understanding oil biosynthesis mechanism in plant vegetative tissues. Overexpression of CeDGAT2-2 alone can significantly increase oleic acid-enriched oil accumulation in tobacco leaves without negative impact on other agronomy traits, showing CeDGAT2-2 as the desirable target gene in metabolic engineering to enrich oil and value-added lipids in high-biomass plants for commercial production of biofuel oils.


Sign in / Sign up

Export Citation Format

Share Document