scholarly journals Influence of Biocompatible Coating on Titanium Surface Characteristics

Author(s):  
Željka Petrović ◽  
Jozefina Katić ◽  
Ankica Šarić ◽  
Ines Despotović ◽  
Nives Matijaković ◽  
...  

Background: Nowadays investigations in the field of dental implants engineering are focused on bioactivity and osseointegration properties. Objective: In this study, the oxide-covered titanium was functionalized by vitamin D3 molecules via a simple self-assembly method with the aim to design more corrosion-resistant and at the same time more bioactive surface. Methods: Surface properties of the D3-coated titanium were examined by scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy, and contact angle measurements, while long-term corrosion stability during immersion in an artificial saliva solution was investigated in situ by electrochemical impedance spectroscopy. Results: Results of all techniques confirmed a successful formation of the vitamin D3 layer on the oxide-covered titanium. Besides very good corrosion resistivity (~5 MΩ cm2), the D3-modified titanium surface induced spontaneous formation of biocompatible bone-like calcium phosphates (CaP). Conclusion: Observed in vitro CaP-forming ability as a result of D3-modified titanium/artificial saliva interactions could serve as a promising predictor of in vivo bioactivity of implant materials.

Author(s):  
Željka Petrović ◽  
Jozefina Katić ◽  
Ankica Šarić ◽  
Ines Despotović ◽  
Nives Matijaković ◽  
...  

Background: Nowadays investigations in the field of dental implants engineering are focused on bioactivity and osseointegration properties.Objective: In this study, the oxide-covered titanium was functionalized by vitamin D3 molecules via a simple self-assembly method with the aim to design more corrosion resistant and at the same time more bioactive surface.Methods: Surface properties of the D3-coated titanium were examined by scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy, and contact angle measurements, while a long-term corrosion stability during immersion in an artificial saliva solution was investigated in situ by electrochemical impedance spectroscopy.Results: Results of all techniques confirmed a successful formation of the D3 vitamin layer on the oxide-covered titanium. Besides very good corrosion resistivity (~5 MΩcm2 ) the D3-modified titanium surface induced spontaneous formation of biocompatible bone-like calcium phosphates (CaP).Conclusion: Observed in vitro CaP-forming ability as a result of D3-modified titanium/artificial saliva interactions could serve as a promising predictor of in vivo bioactivity of implant materials.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 316
Author(s):  
Cong Wang ◽  
Yu-Chen Wei ◽  
Ho-Kun Sung ◽  
Alok Kumar ◽  
Zhong-Liang Zhou ◽  
...  

High density electrocorticography (ECoG)-based microelectrode arrays (MEAs) are fabricated to timely record the neural activities to provide the fundamental understanding in neuroscience and biomedical engineering. This paper aims to introduce a device-based concept and wafer-scale fabrication process for MEAs. Flexible and biocompatible polyimide is applied on MEAs to bear all possible stress and strain. Detailed fabrication key techniques, including surface treatment, polyimide stability measurement, evaporation process, and curing conditions, have been discussed thoroughly. Moreover, the fabricated polyimide-based MEAs are surface-mounted on well-packaged printed circuit boards (PCBs) via a slot-type connector without any additional wire bonding to make the signal recording process easier. An absence seizure was recorded during the in vivo test, which shows the availability of signal recording based on the presented MEAs. The proposed MEAs could be remained at the skull, while the connector and PCBs can be disassembled apart. Therefore, the testing sample will get less suffering. To verify the robustness of the fabricated MEAs, the impedance properties were characterized using electrochemical impedance spectroscopy. The measured results indicate an average impedance of 12.3 ± 0.675 kΩ at 1 kHz. In total, 10 groups of MEAs were sample tested, and over 90% of the total 60 channels per 1-MEAs operated efficiently.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhengchuan Zhang ◽  
Ruogu Xu ◽  
Yang Yang ◽  
Chaoan Liang ◽  
Xiaolin Yu ◽  
...  

Abstract Background Micro/nano-textured hierarchical titanium topography is more bioactive and biomimetic than smooth, micro-textured or nano-textured titanium topographies. Bone marrow mesenchymal stem cells (BMSCs) and exosomes derived from BMSCs play important roles in the osseointegration of titanium implants, but the effects and mechanisms of titanium topography on BMSCs-derived exosome secretion are still unclear. This study determined whether the secretion behavior of exosomes derived from BMSCs is differently affected by different titanium topographies both in vitro and in vivo. Results We found that both micro/nanonet-textured hierarchical titanium topography and micro/nanotube-textured hierarchical titanium topography showed favorable roughness and hydrophilicity. These two micro/nano-textured hierarchical titanium topographies enhanced the spreading areas of BMSCs on the titanium surface with stronger promotion of BMSCs proliferation in vitro. Compared to micro-textured titanium topography, micro/nano-textured hierarchical titanium topography significantly enhanced osseointegration in vivo and promoted BMSCs to synthesize and transport exosomes and then release these exosomes into the extracellular environment both in vitro and in vivo. Moreover, micro/nanonet-textured hierarchical titanium topography promoted exosome secretion by upregulating RAB27B and SMPD3 gene expression and micro/nanotube-textured hierarchical titanium topography promoted exosome secretion due to the strongest enhancement in cell proliferation. Conclusions These findings provide evidence that micro/nano-textured hierarchical titanium topography promotes exosome biogenesis and extracellular secretion for enhanced osseointegration. Our findings also highlight that the optimized titanium topography can increase exosome secretion from BMSCs, which may promote osseointegration of titanium implants.


2005 ◽  
Vol 284-286 ◽  
pp. 11-14 ◽  
Author(s):  
Yang Leng ◽  
Ren Long Xin ◽  
Ji Yong Chen

Bioactive calcium phosphate (Ca-P) formation in bioceramics surfaces in simulated body fluid (SBF) and in rabbit muscle sites was investigated. The examined bioceamics included most commonly used bioglass®, A-W glass-ceramics and calcium phosphates in orthopedic and dental applications. The Ca-P cyrstal structures were examined with single crystal diffraction patterns in transmission electron microscopy, which reduced possibility of misidentifying Ca-P phases. The experimental results show that capability of Ca-P formation considerably varied among bioceramics, particularly in vivo. Octacalcium phosphate (OCP) was revealed on the all types of bioceramics in vitro and in vivo experiments. This work leads us to rethink how to evaluate bioactivity of bioceramics and other orthopedic materials which exhibit capability of osteoconduction by forming direct bonding with bone.


2013 ◽  
Vol 54 (6) ◽  
pp. 3863 ◽  
Author(s):  
Eleftherios I. Paschalis ◽  
James Chodosh ◽  
Sandra Spurr-Michaud ◽  
Andrea Cruzat ◽  
Allyson Tauber ◽  
...  

Blood ◽  
1991 ◽  
Vol 78 (1) ◽  
pp. 75-82 ◽  
Author(s):  
JY Zhou ◽  
AW Norman ◽  
M Akashi ◽  
DL Chen ◽  
MR Uskokovic ◽  
...  

We describe several novel analogs of the seco-steroid 1,25(OH)2-vitamin D3[1,25(OH)2D3] and their effects on differentiation and proliferation of HL-60 human myeloid leukemic cells in vitro as well as their effects on calcium metabolism in vivo. The 1 alpha-25(OH)2–16ene-23yne-26,27F6- vitamin D3 is the most potent analog reported to date, having about 80- fold more activity than the reference 1,25(OH)2D3 for inhibition of proliferation and induction of differentiation of HL-60 cells. Also, this analog decreased RNA expression of MYC oncogene in HL-60 by 90% at 5 x 10(-10) mol/L. Intriguingly, intestinal calcium absorption and bone calcium mobilization mediated in vivo by 1 alpha-25(OH)2–16ene-23yne- 26,27F6-D3 was found to be markedly (15-fold) less than that of 1,25(OH)2D3. In addition, 1 alpha-25(OH)2D3 bound to 1,25(OH)2D3 receptors of both HL-60 and intestine more avidly than did 1 alpha- 25(OH)2–16ene-23yne-26,27F6-D3. This novel analog may open up new therapeutic strategies for several hematopoietic, skin, and bone abnormalities and may provide a new tool to understand how vitamin D3 seco-steroids induce cellular differentiation.


2011 ◽  
Vol 672 ◽  
pp. 233-236
Author(s):  
Călin Rareş Roman ◽  
Lidia Adriana Sorcoi

This paper presents a study concerning a new titanium-based product reached by the specific techniques of powder metallurgy. The product was tested in vitro to corrosion in artificial saliva and in vivo by biological inocuity on sheep and rats for biocompatibility. The chemical composition of artificial saliva solutions used for general corrosion tests were: Fusayama solution; Carter solution; Ericsson solution; Hank solution; Ringer solution. The exposure length was 48, 720, 1440 and 2784 hours. On the sheep, six titanium implants of purity 99.89%, sintered with microporosities and nanoporosities at the surface were administered. Function of implant location, three cm incisions in the skin was made in the following regions: retroscapular for subcutaneous implants, in the tibial diaphysis for the subperiostal implant and in the Latimus Dorsi region for the intramuscular implant. Three different lots of Wistar breed rats were used; the sintered 3.5/1.5 cm titanium implants were placed subcutaneously and intermuscles. Parameters of descriptive statistics were used to assess inflammatory reaction.


Sign in / Sign up

Export Citation Format

Share Document