Preliminary Studies Regarding the Behaviour of New Titanium Implants

2011 ◽  
Vol 672 ◽  
pp. 233-236
Author(s):  
Călin Rareş Roman ◽  
Lidia Adriana Sorcoi

This paper presents a study concerning a new titanium-based product reached by the specific techniques of powder metallurgy. The product was tested in vitro to corrosion in artificial saliva and in vivo by biological inocuity on sheep and rats for biocompatibility. The chemical composition of artificial saliva solutions used for general corrosion tests were: Fusayama solution; Carter solution; Ericsson solution; Hank solution; Ringer solution. The exposure length was 48, 720, 1440 and 2784 hours. On the sheep, six titanium implants of purity 99.89%, sintered with microporosities and nanoporosities at the surface were administered. Function of implant location, three cm incisions in the skin was made in the following regions: retroscapular for subcutaneous implants, in the tibial diaphysis for the subperiostal implant and in the Latimus Dorsi region for the intramuscular implant. Three different lots of Wistar breed rats were used; the sintered 3.5/1.5 cm titanium implants were placed subcutaneously and intermuscles. Parameters of descriptive statistics were used to assess inflammatory reaction.

2020 ◽  
Author(s):  
K. Zerrouki ◽  
N. Djebli ◽  
L. Gadouche ◽  
I. Erdogan Orhan ◽  
F. SezerSenol Deniz ◽  
...  

Nowadays, because of the industrialization, a lot of contaminant were available ; the consequences of this availability are apparition of diseases including neurodegeneration. Neurodegenerative diseases of the human brain comprise a variety of disorders that affect an increasing percentage of the population. This study is based on the effect of the Boswellic resin, which is from a medicinal plant and known for its antioxidant effects on nerve cell damage. The objective of this work was to evaluate the in vitro and in vivo effects of the Boswellic resin on anticholinesterase activity and Alzheimer’s disease (AD) induced by D-galactose and aluminum tetrachloride in Swiss mice. Chemical composition of the resin essential oil was identified by the CG-MS analysis. The antioxidant activity was also assessed by the DMPD and metal chelation methods. In order to understand the mechanism of memory improvement, the acetylcholinesterase, AChE, and butyrylcholinesterase, BChE, inhibitory assays were performed. In vivo part of the study was achieved on Swiss mice divided into four groups: control, AD model, treated AD, and treated control group. The identification of chemical composition by CG-MS reach the 89.67% of the total extract compounds presented some very important molecules (p-Cymene, n-Octyl acetate, α-Pinene…). The present study proves that Boswellic resin improves memory and learning in treated Alzheimer’s group, modulates the oxidative stress and be involved in the protective effect against amyloid deposition and neurodegeneration, and stimulates the immune system in mice’s brain.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhengchuan Zhang ◽  
Ruogu Xu ◽  
Yang Yang ◽  
Chaoan Liang ◽  
Xiaolin Yu ◽  
...  

Abstract Background Micro/nano-textured hierarchical titanium topography is more bioactive and biomimetic than smooth, micro-textured or nano-textured titanium topographies. Bone marrow mesenchymal stem cells (BMSCs) and exosomes derived from BMSCs play important roles in the osseointegration of titanium implants, but the effects and mechanisms of titanium topography on BMSCs-derived exosome secretion are still unclear. This study determined whether the secretion behavior of exosomes derived from BMSCs is differently affected by different titanium topographies both in vitro and in vivo. Results We found that both micro/nanonet-textured hierarchical titanium topography and micro/nanotube-textured hierarchical titanium topography showed favorable roughness and hydrophilicity. These two micro/nano-textured hierarchical titanium topographies enhanced the spreading areas of BMSCs on the titanium surface with stronger promotion of BMSCs proliferation in vitro. Compared to micro-textured titanium topography, micro/nano-textured hierarchical titanium topography significantly enhanced osseointegration in vivo and promoted BMSCs to synthesize and transport exosomes and then release these exosomes into the extracellular environment both in vitro and in vivo. Moreover, micro/nanonet-textured hierarchical titanium topography promoted exosome secretion by upregulating RAB27B and SMPD3 gene expression and micro/nanotube-textured hierarchical titanium topography promoted exosome secretion due to the strongest enhancement in cell proliferation. Conclusions These findings provide evidence that micro/nano-textured hierarchical titanium topography promotes exosome biogenesis and extracellular secretion for enhanced osseointegration. Our findings also highlight that the optimized titanium topography can increase exosome secretion from BMSCs, which may promote osseointegration of titanium implants.


1986 ◽  
Vol 6 (7) ◽  
pp. 2663-2673 ◽  
Author(s):  
M C Strobel ◽  
J Abelson

The Saccharomyces cerevisiae leucine-inserting amber suppressor tRNA gene SUP53 (a tRNALeu3 allele) was used to investigate the relationship between precursor tRNA structure and mature tRNA function. This gene encodes a pre-tRNA which contains a 32-base intron. The mature tRNASUP53 contains a 5-methylcytosine modification of the anticodon wobble base. Mutations were made in the SUP53 intron. These mutant genes were transcribed in an S. cerevisiae nuclear extract preparation. In this extract, primary tRNA gene transcripts are end-processed and base modified after addition of cofactors. The base modifications made in vitro were examined, and the mutant pre-tRNAs were analyzed for their ability to serve as substrates for partially purified S. cerevisiae tRNA endonuclease and ligase. Finally, the suppressor function of these mutant tRNA genes was assayed after their integration into the S. cerevisiae genome. Mutant analysis showed that the totally intact precursor tRNA, rather than any specific sequence or structure of the intron, was necessary for efficient nonsense suppression by tRNASUP53. Less efficient suppressor activity correlated with the absence of the 5-methylcytosine modification. Most of the intron-altered precursor tRNAs were successfully spliced in vitro, indicating that modifications are not critical for recognition by the tRNA endonuclease and ligase.


1987 ◽  
Vol 16 (1) ◽  
pp. 37-41 ◽  
Author(s):  
A J Cox ◽  
D W L Hukins ◽  
K E Davies ◽  
J C Irlam ◽  
T M Sutton

An automated technique has been developed for assessing the extent to which existing or potential materials for the construction of indwelling catheters become encrusted during exposure to infected urine. In this technique the enzyme urease is added to artificial urine containing albumin in a reaction vessel which contains the samples to be tested. Controlled replacement of reactants leads to appreciable formation of encrusting deposits which adhere firmly to the surface of the test samples. Deposits have the same chemical composition as those which encrust catheters in vivo.


2013 ◽  
Vol 18 (1) ◽  
pp. 86-93
Author(s):  
Gustavo Antônio Martins Brandão ◽  
Rafael Menezes Simas ◽  
Leandro Moreira de Almeida ◽  
Juliana Melo da Silva ◽  
Marcelo de Castro Meneghim ◽  
...  

OBJECTIVE: To evaluate the in vitro ionic degradation and slot base corrosion of metallic brackets subjected to brushing with dentifrices, through analysis of chemical composition by Energy Dispersive Spectroscopy (EDS) and qualitative analysis by Scanning Electron Microscopy (SEM). METHODS: Thirty eight brackets were selected and randomly divided into four experimental groups (n = 7). Two groups (n = 5) worked as positive and negative controls. Simulated orthodontic braces were assembled using 0.019 x 0.025-in stainless steel wires and elastomeric rings. The groups were divided according to surface treatment: G1 (Máxima Proteção Anticáries®); G2 (Total 12®); G3 (Sensitive®); G4 (Branqueador®); Positive control (artificial saliva) and Negative control (no treatment). Twenty eight brushing cycles were performed and evaluations were made before (T0) and after (T1) experiment. RESULTS: The Wilcoxon test showed no difference in ionic concentrations of titanium (Ti), chromium (Cr), iron (Fe) and nickel (Ni) between groups. G2 presented significant reduction (p < 0.05) in the concentration of aluminium ion (Al). Groups G3 and G4 presented significant increase (p < 0.05) in the concentration of aluminium ion. The SEM analysis showed increased characteristics indicative of corrosion on groups G2, G3 and G4. CONCLUSION: The EDS analysis revealed that control groups and G1 did not suffer alterations on the chemical composition. G2 presented degradation in the amount of Al ion. G3 and G4 suffered increase in the concentration of Al. The immersion in artificial saliva and the dentifrice Máxima Proteção Anticáries® did not alter the surface polishing. The dentifrices Total 12®, Sensitive® and Branqueador® altered the surface polishing.


2009 ◽  
Vol 631-632 ◽  
pp. 211-216 ◽  
Author(s):  
Kyosuke Ueda ◽  
Takayuki Narushima ◽  
Takashi Goto ◽  
T. Katsube ◽  
Hironobu Nakagawa ◽  
...  

Calcium phosphate coating films were fabricated on Ti-6Al-4V plates and screw-type implants with a blast-treated surface using radiofrequency (RF) magnetron sputtering and were evaluated in vitro and in vivo. Amorphous calcium phosphate (ACP) and oxyapatite (OAp) films obtained in this study could cover the blast-treated substrate very efficiently, maintaining the surface roughness. For the in vitro evaluations of the calcium phosphate coating films, bonding strength and alkaline phosphatase (ALP) activity were examined. The bonding strength of the coating films to a blast-treated substrate exceeded 60 MPa, independent of film phases except for the film after post-heat-treatment in silica ampoule. When compared with an uncoated substrate, the increase in the ALP activity of osteoblastic SaOS-2 cells on a calcium phosphate coated substrate was confirmed by a cell culture test. The removal torque of screw-type Ti-6Al-4V implants with a blast-treated surface from the femur of Japanese white rabbit increased with the duration of implantation and it was statistically improved by coating an ACP film 2 weeks after implantation. The in vitro and in vivo studies suggested that the application of the sputtered ACP film as a coating on titanium implants was effective in improving their biocompatibility with bones.


Biomaterials ◽  
2021 ◽  
pp. 121039
Author(s):  
Shahar Shelly ◽  
Sigal Liraz Zaltsman ◽  
Ofir Ben-Gal ◽  
Avraham Dayan ◽  
Ithamar Ganmore ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 555
Author(s):  
Marilena Vlachou ◽  
Vangelis Karalis

The aim of this study was to develop a new in vitro–in vivo simulation (IVIVS) approach in order to predict the outcome of a bioequivalence study. The predictability of the IVIVS procedure was evaluated through its application in the development process of a new generic product of amlodipine/irbesartan/hydrochlorothiazide. The developed IVIVS methodology is composed of three parts: (a) mathematical description of in vitro dissolution profiles, (b) mathematical description of in vivo kinetics, and (c) development of joint in vitro–in vivo simulations. The entire programming was done in MATLAB® and all created scripts were validated through other software. The IVIVS approach can be implemented for any number of subjects, clinical design, variability and can be repeated for thousands of times using Monte Carlo techniques. The probability of success of each scenario is recorded and finally, an overall assessment is made in order to select the most suitable batch. Alternatively, if the IVIVS shows reduced probability of BE success, the R&D department is advised to reformulate the product. In this study, the IVIVS approach predicted successfully the BE outcome of the three drugs. During the development of generics, the IVIVS approach can save time and expenses.


1985 ◽  
Vol 5 (5) ◽  
pp. 1093-1099
Author(s):  
R J Schmidt ◽  
N W Gillham ◽  
J E Boynton

In pulse-chase experiments in which log-phase cells of Chlamydomonas reinhardtii were labeled in vivo for 5 min with H2(35)SO4, fluorographs of immunoprecipitates from whole cell extracts revealed that chloroplast ribosomal proteins L-2, L-6, L-21, and L-29, which are made in the cytosol and imported, appeared in their mature forms. However, in the case of chloroplast ribosomal protein L-18, which is also made in the cytoplasm and imported, a prominent precursor with an apparent molecular weight of 17,000 was found at the end of a 5-min pulse. This precursor was processed to its mature size (apparent molecular weight of 15,500) within the first 5 min of the subsequent chase. As determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the precursor to L-18 formed in vivo was 1.5 kilodaltons smaller than the primary product detected in translations of Chlamydomonas polyadenylated RNA in vitro. Upon a 10-min incubation with a postribosomal supernatant from Chlamydomonas, the 18,500-dalton precursor detected in vitro could be partially converted into a polypeptide that comigrated with the 17,000-dalton precursor detected in extracts of cells labeled in vivo. Under conditions in which the total amounts of chloroplast proteins had been reduced and cells were made to synthesize ribosomes rapidly, the apparent half-life of the 17,000-dalton precursor was extended over that seen in log-phase cells. When chloroplast protein synthesis was inhibited with lincomycin for 3 h before labeling under these conditions, the 17,000-dalton L-18 precursor but not the mature form was found, and the precursor was slowly degraded during a 60-min chase. When cells were placed in the dark for 3 h before labeling, processing of this precursor to the mature form appeared unaffected, but the chloroplast-synthesized ribosomal protein L-26 was detected, indicating that chloroplast protein synthesis was still occurring. We interpret these results to indicate that the maturation of protein L-18 in vivo involves at least two processing steps, one of which depends on a protein made on chloroplast ribosomes.


1994 ◽  
Vol 76 (4) ◽  
pp. 1520-1527 ◽  
Author(s):  
J. E. Moore ◽  
S. E. Maier ◽  
D. N. Ku ◽  
P. Boesiger

In vivo measurements of blood velocity profiles are difficult to obtain and interpret, since the parameters that govern the normally highly complex flow situation may not be fully quantified or understood at the time of measurement. In vitro flow models have been used often to better understand vascular hemodynamics. The assumptions made in the design of these models limit the applicability of the results. In this study, in vitro flow measurements made in a carefully designed model of the abdominal aorta were compared with in vivo measurements obtained with magnetic resonance imaging. In the suprarenal aorta, the velocity profiles were mostly forward and axisymmetric in both the in vitro and in vivo cases. In the infrarenal aorta, there was extensive flow reversal noted near the posterior wall in both cases. In the aortic bifurcation, two peaks of flow reversal were noted near the lateral posterior walls, and M-shaped velocity profiles were observed in late diastole. The in vitro and in vivo measurements exhibited good qualitative agreement. The in vitro model was accurate in modeling the in vivo hemodynamics of the abdominal aorta. The complex phenomena observed in vivo were explained on the basis of knowledge gained from the in vitro study.


Sign in / Sign up

Export Citation Format

Share Document