A Mini Review of Technological Options for Disposal of Municipal Solid Waste in India

2021 ◽  
Vol 7 (1) ◽  
pp. 2-12
Author(s):  
Ravindra Verma ◽  
Prakash Singh Bisen

Background: It has been seen that 90% of municipal solid waste is disposed off in open dumps and landfill sites, causing problems for the environment, and public health in developing countries. Many technological options can convert waste into various forms of energy. Heat and electricity can be generated and utilized for specific thermodynamic conversion processes and different types of biofuel can also be extracted from the organic municipal solid waste. Objective: This study evaluates the different treatment options available to convert waste into energy, and also concludes its environmental aspect with suggestions, which may be beneficial for encouraging the researchers to work for further improvement in this aspect. Methods: For each technological area, results from the literature review and the different expert opinions were considered to provide an analysis of the treatment technology, identify the internal and external environmental threats and important gaps in treatment technologies for MSW in India. Results: It has been observed from various studies that the pyrolysis/gasification is the suitable option for the treatment of different compositions of solid waste with high energy recovery in India, while bio-methanation is suitable for a decentralized system with a high energy value, and a minimum level of pollution & health hazards. Conclusion: The study and observations show that there are multiple technological options for the treatment of municipal solid waste. Research and development in the MSW sector is not a priority in India, therefore, it has been recognized that expert research advice is required while selecting technology as well as for deciding the tools and techniques to handle this issue.

2010 ◽  
Vol 64 (2) ◽  
Author(s):  
Agnieszka Zawadzka ◽  
Liliana Krzystek ◽  
Stanisław Ledakowicz

AbstractTo carry out autothermal drying processes during the composting of biomass, a horizontal tubular reactor was designed and tested. A biodrying tunnel of the total capacity of 240 dm3 was made of plastic material and insulated with polyurethane foam to prevent heat losses. Municipal solid waste and structural plant material were used as the input substrate. As a result of autothermal drying processes, moisture content decreased by 50 % of the initial moisture content of organic waste of about 800 g kg−1. In the tested cycles, high temperatures of biodried waste mass were achieved (54–56°C). An appropriate quantity of air was supplied to maintain a satisfactory level of temperature and moisture removal in the biodried mass and high energy content in the final product. The heat of combustion of dried waste and its calorific value were determined in a calorimeter. Examinations of pyrolysis and gasification of dried waste confirmed their usefulness as biofuel of satisfactory energy content.


2015 ◽  
Vol 789-790 ◽  
pp. 377-381 ◽  
Author(s):  
Somrat Kerdsuwan

Incineration is a Thermal Treatment Technology (3Ts) that could be expressed as the way to get rid of waste effectively with the reduction of its mass and volume. However, to control the combustion process efficiently, especially combustion temperature, with low energy content in Municipal Solid Waste (MSW), an additional fuel is needed and leads to increase of operating cost compared with other disposal option. High Temperature Air Combustion (HTAC) has been successfully demonstrated in a lab-scale incinerator for energy saving and pollutant reduction, especially NOx. This article has the objective to design and manufacture the prototype scale High Temperature Air Incinerator with a capacity to treat MSW of 12 Ton per day. The system consists of an automatic feeding machine to feed the waste into the primary combustion chamber (PCC) where the combustion takes place. The push ram is used to push the burning waste and fall down to the lower hearth. Primary combustion air is supplied into PCC at the amount lower than the stoichiometric requirement to produce the combustible gas which is flown into the Secondary Combustion Chamber (SCC) located above PCC. Secondary combustion air is injected to react with combustible gas to convert to the product of complete combustion. A part of hot flue gas which is flew out from SCC is reverted and mixed with fresh air, in order to reduce oxygen concentration, before passing through the heat exchanger tube bundle which is placed inside SCC in order to exchange heat with hot flue gas. To manufacture the designed incinerator, the detail of materials used as well as the frabication method is explained. It has been shown that HTAC can be applied for thermal destruction of waste successfully, in term of energy saving and pollutant free. Benefits of this research work will promote the using of thermal treatment technology of dispose of MSW with lower operating cost and lower pollutants.


2006 ◽  
Vol 53 (8) ◽  
pp. 187-194 ◽  
Author(s):  
L. De Baere

Anaerobic digestion has captured a significant share of the European market for the biological treatment of the organic fraction in municipal solid waste. Almost 4 million ton per year in digestion capacity has been installed through the construction of more than 120 full-scale plants. Not all plants have been equally successful, due to poor planning, design or bad operation. This, besides higher than expected investment and operating costs, may have slowed down the growth of anaerobic digestion of solid waste. However, an evaluation of the development of anaerobic digestion over the last 15 years shows that there is now a greater diversity in application, a wider range in types of systems and suppliers, and a continued increasing rate of implementation throughout most parts of Europe. New alternative treatment techniques have not seen the same level of success as anaerobic digestion. Anaerobic digestion has been established as a viable treatment technology for the organic fraction of municipal solid waste and will most likely play an even more important role in the future.


2014 ◽  
Vol 3 (2) ◽  
pp. 205-215 ◽  
Author(s):  
Offor N Kimambo ◽  
P Subramanian

In this paper production of energy efficient Refuse Derived Fuel (RDF) from municipal solid waste rejects was carried out during August 2012 – April 2013 in Coimbatore City India. Municipal Solid wastes rejects (paper, plastics with exception of polyvinyl chloride, textiles) were collected from waste dump yard of Coimbatore City. Sawdust, coir dust, water hyacinth and rice husk were mixed with the collected wastes at a fixed amount of 20 percent. After grinding, cassava starch was used as a binder to produce RDF briquettes with the help of uniaxial piston briquettes making machine. Physical, chemical and thermal characteristics of the RDF were studied to assess their potential use as energy efficient material. The analyses were divided into three categories namely, physical, proximate and ultimate analyses. Results indicated that, under physical and proximate analyses; impact resistance index (IRI) for all the RDF samples were 200, density were less than 1 kg cm-3, moisture were less than 10 % wt, ash content varied from 2.8 to 9.2 % wt, whilst volatile mater had mean value of 83.1 % wt and fixed carbon which is by subtraction ranged from 1.4 to 9.2 % wt. With respect to Ultimate analysis, Oxygen, carbon, hydrogen varied from 27.01 to 39.78 % wt, 44.8 to59.7 % wt, 5.9 to 8.1 % wt respectively. On the other hand nitrogen, sulfur and chlorine ranged from 0.18 to 0.87 % wt, 0.27 to 0.71 % wt and 0.339 to0.521 % wt respectively. Calorific values (high heating values) ranged from 5085 to 6474.9 kcal kg-1. The results were compared with Energy research Centre for the Netherland database and noted that with exception to moisture, fixed carbon and hydrogen other parameters had a significant lower or higher differences. From the study, RDF from municipal solid wastes rejects along with the additives produced high energy efficient materials. DOI: http://dx.doi.org/10.3126/ije.v3i2.10530 International Journal of the Environment Vol.3(2) 2014: 205-215


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1994 ◽  
Author(s):  
Martin Pavlas ◽  
Jan Dvořáček ◽  
Thorsten Pitschke ◽  
René Peche

Biowaste represents a significant fraction of municipal solid waste (MSW). Its separate collection is considered as a useful measure to enhance waste management systems in both the developed and developing world. This paper aims to compare the environmental performance of three market-ready technologies currently used to treat biowaste—biowaste composting, fermentation, and biowaste incineration in waste-to-energy (WtE) plants as a component of residual municipal solid waste (RES). Global warming potential (GWP) was applied as an indicator and burdens related to the operation of facilities and credits obtained through the products were identified. The environmental performance of a WtE plant was investigated in detail using a model, implementing an approach similar to marginal-cost and revenues, which is a concept widely applied in economics. The results show that all of the treatment options offer an environmentally friendly treatment (their net GWP is negative). The environmental performance of a WtE plant is profoundly affected by its mode of its operation, i.e., type of energy exported. The concept producing environmental credits at the highest rate is co-incineration of biowaste in a strictly heat-oriented WtE plant. Anaerobic digestion plants treating biowaste by fermentation produce fewer credits, but approximately twice as more credits as WtE plants with power delivery only.


2014 ◽  
Vol 17 (2) ◽  
pp. 90-101
Author(s):  
Duy Quang Ngo ◽  
Hai Thanh Le

In the recent years, speed of urbanization and industrialization had increased quickly and strongly which continued to increase in the next years. It has brought about pressure on the environment and community. We have many difficulties, existence which need to solve as treatment waste water and air pollution, solid waste is also a big challenge, it is menace to the environment and health of community. Efficient processing of municipal solid waste is a effective solution. We need criterions to assessment. From the practical requirement, research had made criterions to assess the effectiveness of composting technology, waste inceration technology, sanitary landfill technology. The results of the application of this criterion (application to assess the effectiveness of the treatment technology of municipal solid waste - in case research in North West Solid Waste Treatment Complex at 3 business) showed reasonable, effective which raise process efficiency, improvement and perfection of the treatment technology of municipal solid waste. Criterions can apply with business, government in treatment municipal solid waste.


Sign in / Sign up

Export Citation Format

Share Document