Poly-phenolic branched-chain fatty acids as potential bio-based, odorless, liquid antimicrobial agents

Author(s):  
Helen Ngo ◽  
◽  
Xuetong Fan ◽  
Robert Moreau
2010 ◽  
Vol 78 (11) ◽  
pp. 4667-4673 ◽  
Author(s):  
Yvonne Sun ◽  
Mary X. D. O'Riordan

ABSTRACT Anteiso-branched-chain fatty acids (BCFA) represent the dominant group of membrane fatty acids and have been established as crucial determinants in resistance against environmental stresses in Listeria monocytogenes, a facultative intracellular pathogen. Here, we investigate the role of anteiso-BCFA in L. monocytogenes virulence by using mutants deficient in branched-chain alpha-keto acid dehydrogenase (BKD), an enzyme complex involved in the synthesis of BCFA. In tissue culture models of infection, anteiso-BCFA contributed to intracellular growth and survival in macrophages and significantly enhanced plaque formation upon prolonged infection in L2 fibroblasts. The intracellular defects observed could be attributed partially to insufficient listeriolysin O (LLO) production, indicating a requirement for anteiso-BCFA in regulating virulence factor production. In a murine model of infection, the BKD-deficient mutant was highly attenuated, further emphasizing the importance of BKD-mediated metabolism in L. monocytogenes virulence. This study demonstrates an underappreciated role for BCFA in bacterial pathogenesis, which may provide insight into the development and application of antimicrobial agents.


Antibiotics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 214
Author(s):  
Kiran B. Tiwari ◽  
Craig Gatto ◽  
Brian J. Wilkinson

Staphylococcus aureus demonstrates considerable membrane lipid plasticity in response to different growth environments, which is of potential relevance to response and resistance to various antimicrobial agents. This information is not available for various species of coagulase-negative staphylococci, which are common skin inhabitants, can be significant human pathogens, and are resistant to multiple antibiotics. We determined the total fatty acid compositions of Staphylococcus auricularis, Staphylococcus capitis, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus saprophyticus, and Staphylococcus aureus for comparison purposes. Different proportions of branched-chain and straight-chain fatty acids were observed amongst the different species. However, growth in cation-supplemented Mueller–Hinton broth significantly increased the proportion of branched-chain fatty acids, and membrane fluidities as measured by fluorescence anisotropy. Cation-supplemented Mueller–Hinton broth is used for routine determination of antimicrobial susceptibilities. Growth in serum led to significant increases in straight-chain unsaturated fatty acids in the total fatty acid profiles, and decreases in branched-chain fatty acids. This indicates preformed fatty acids can replace biosynthesized fatty acids in the glycerolipids of coagulase-negative staphylococci, and indicates that bacterial fatty acid biosynthesis system II may not be a good target for antimicrobial agents in these organisms. Even though the different species are expected to be exposed to skin antimicrobial fatty acids, they were susceptible to the major skin antimicrobial fatty acid sapienic acid (C16:1Δ6). Certain species were not susceptible to linoleic acid (C18:2Δ9,12), but no obvious relationship to fatty acid composition could be discerned.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1808
Author(s):  
Iris Trefflich ◽  
Stefan Dietrich ◽  
Annett Braune ◽  
Klaus Abraham ◽  
Cornelia Weikert

A vegan diet could impact microbiota composition and bacterial metabolites like short-chain (SCFA) and branched-chain fatty acids (BCFA). The aim of this study was to compare the concentrations of SCFA, BCFA, ammonia, and fecal pH between vegans and omnivores. In this cross-sectional study (vegans n = 36; omnivores n = 36), microbiota composition, fecal SCFA, BCFA, and ammonia concentrations and pH were analyzed in complete stool samples. A random forest regression (RFR) was used to identify bacteria predicting SCFA/BCFA concentrations in vegans and omnivores. No significant differences in SCFA and BCFA concentrations were observed between vegans and omnivores. Fecal pH (p = 0.005) and ammonia concentration (p = 0.01) were significantly lower in vegans than in omnivores, while fiber intake was higher (p < 0.0001). Shannon diversity was higher in omnivores compared to vegans on species level (p = 0.04) only. In vegans, a cluster of Faecalibacterium prausnitzii, Prevotella copri, Dialister spp., and Eubacterium spp. was predictive for SCFA and BCFA concentrations. In omnivores, Bacteroides spp., Clostridium spp., Ruminococcus spp., and Prevotella copri were predictive. Though SCFA and BCFA did not differ between vegans and omnivores, the results of the RFR suggest that bacterial functionality may be adapted to varying nutrient availability in these diets.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jie Shi ◽  
Di Zhao ◽  
Fan Zhao ◽  
Chong Wang ◽  
Galia Zamaratskaia ◽  
...  

AbstractThis study was aimed to evaluate the differences in the composition of gut microbiota, tryptophan metabolites and short-chain fatty acids in feces between volunteers who frequently ate chicken and who frequently ate pork. Twenty male chicken-eaters and 20 male pork-eaters of 18 and 30 years old were recruited to collect feces samples for analyses of gut microbiota composition, short-chain fatty acids and tryptophan metabolites. Chicken-eaters had more diverse gut microbiota and higher abundance of Prevotella 9, Dialister, Faecalibacterium, Megamonas, and Prevotella 2. However, pork-eaters had higher relative abundance of Bacteroides, Faecalibacterium, Roseburia, Dialister, and Ruminococcus 2. In addition, chicken-eaters had high contents of skatole and indole in feces than pork-eaters, as well as higher contents of total short chain fatty acids, in particular for acetic acid, propionic acid, and branched chain fatty acids. The Spearman’s correlation analysis revealed that the abundance of Prevotella 2 and Prevotella 9 was positively correlated with levels of fecal skatole, indole and short-chain fatty acids. Thus, intake of chicken diet may increase the risk of skatole- and indole-induced diseases by altering gut microbiota.


2021 ◽  
pp. 106398
Author(s):  
Peter J. Watkins ◽  
Jerad R. Jaborek ◽  
Fei Teng ◽  
Li Day ◽  
Hardy Z. Castada ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Béatrice S.-Y. Choi ◽  
Noëmie Daniel ◽  
Vanessa P. Houde ◽  
Adia Ouellette ◽  
Bruno Marcotte ◽  
...  

AbstractAnimal models of human diseases are classically fed purified diets that contain casein as the unique protein source. We show that provision of a mixed protein source mirroring that found in the western diet exacerbates diet-induced obesity and insulin resistance by potentiating hepatic mTORC1/S6K1 signaling as compared to casein alone. These effects involve alterations in gut microbiota as shown by fecal microbiota transplantation studies. The detrimental impact of the mixed protein source is also linked with early changes in microbial production of branched-chain fatty acids (BCFA) and elevated plasma and hepatic acylcarnitines, indicative of aberrant mitochondrial fatty acid oxidation. We further show that the BCFA, isobutyric and isovaleric acid, increase glucose production and activate mTORC1/S6K1 in hepatocytes. Our findings demonstrate that alteration of dietary protein source exerts a rapid and robust impact on gut microbiota and BCFA with significant consequences for the development of obesity and insulin resistance.


Lipids ◽  
2000 ◽  
Vol 35 (4) ◽  
pp. 373-381 ◽  
Author(s):  
Hirosuke Oku ◽  
Kunio Mimura ◽  
Yumi Tokitsu ◽  
Kyoko Onaga ◽  
Hironori Iwasaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document