scholarly journals Analysis on Nylon 6/6 Camshaft Gear Temperature Simulation In A 1.1 Kva Elepaq Generator Using Inventor and ANSYS

Author(s):  
Olalekan Abdulrahim Sanni ◽  
Sunday Ayoola Oke

<p class="02abstracttext">Camshaft gear temperature simulations are presently crucial as they offer a distinctive visual account of the temperature profile within the generator, they permit superior manufacturing assessment and the design of heat-resistant camshaft gear with high performance and low cost. However, available information to designers is inadequate as they omit the approximate global maximum temperature, particularly for the nylon 6/6 camshaft gear in a 1.1 kVA elepaq generator. In this article, the idea is to simulate and account for the global minimum and maximum temperature using the Inventor and ANSYS software. The stress-induced on the generator was considered. The results of the simulation revealed an approximate global maximum temperature of the nylon 6/6 camshaft gear as 37°C max with 22°C min. Furthermore, the global minimum at 35°C max with 21°C min was considered. Besides, the structural steel global maximum of 38°C max, 25°C min and global minimum 35°C max, 24°C min. The stress values did not exceed 0.1419 MPa on ANSYS but the ANSYS revealed that the camshaft gear strain was within safe limits. The simulation approach predicts the minimum and maximum temperature of the nylon 6/6 camshaft gear and the stress and strain values. The utility of this attempt is to help designers to implement effective decisions on material choice and design parameters for optimisation, performance and low-cost design.</p>

2021 ◽  
Author(s):  
Victor Prost ◽  
W. Brett Johnson ◽  
Jenny A. Kent ◽  
Matthew J. Major ◽  
Amos G. Winter

Abstract The walking pattern and comfort of a person with lower limb amputation are determined by the prosthetic foot’s diverse set of mechanical characteristics. However, most design methodologies are iterative and focus on individual parameters, preventing a holistic design of prosthetic feet for a user’s body size and walking preferences. Here we refined and evaluated the lower leg trajectory error (LLTE) framework, a novel quantitative and predictive design methodology that optimizes the mechanical function of a user’s prosthesis to encourage gait dynamics that match their body size and desired walking pattern. Five people with unilateral below-knee amputation walked over-ground at self-selected speeds using an LLTE-optimized foot made of Nylon 6/6, their daily-use foot, and a standardized commercial energy storage and return (ESR) foot. Using the LLTE feet, target able-bodied kinematics and kinetics were replicated to within 5.2% and 13.9%, respectively, 13.5% closer than with the commercial ESR foot. Additionally, energy return and center of mass propulsion work were 46% and 34% greater compared to the other two prostheses, which could lead to reduced walking effort. Similarly, peak limb loading and flexion moment on the intact leg were reduced by an average of 13.1%, lowering risk of long-term injuries. LLTE-feet were preferred over the commercial ESR foot across all users and preferred over the daily-use feet by two participants. These results suggest that the LLTE framework could be used to design customized, high performance ESR prostheses using low-cost Nylon 6/6 material.


2012 ◽  
Vol 2 (1) ◽  
Author(s):  
Jifeng Wang ◽  
Jorge Olortegui-Yume ◽  
Norbert Müller

AbstractA low cost, light weight, high performance composite material turbomachinery impeller with a uniquely designed blade patterns is analyzed. Such impellers can economically enable refrigeration plants to use water as a refrigerant (R718). A strength and dynamic characteristics analyses procedure is developed to assess the maximum stresses and natural frequencies of these wound composite axial impellers under operating loading conditions. Numerical simulation using FEM for two-dimensional and three-dimensional impellers was investigated. A commercially available software ANSYS is used for the finite element calculations. Analysis is done for different blade geometries and then suggestions are made for optimum design parameters. In order to avoid operating at resonance, which can make impellers suffer a significant reduction in the design life, the designer must calculate the natural frequency and modal shape of the impeller to analyze the dynamic characteristics. The results show that using composite Kevlar fiber/epoxy matrix enables the impeller to run at high tip speed and withstand the stresses, no critical speed will be matched during start-up and shut-down, and that mass imbalances of the impeller shall not pose a critical problem.


Author(s):  
Jifeng Wang ◽  
Mohit Patil ◽  
Jorge Olortegui-Yume ◽  
Norbert Mu¨ller

A low-cost, light-weight, high-performance, composite turbomachinery impeller with uniquely designed blade patterns is analyzed. Such impellers can economically enable refrigeration plants to use water as a refrigerant (R718). A stress and vibration analyses procedure is developed to assess the maximum stresses and natural frequencies of these wound composite axial impellers under operating loading conditions using Finite Element Method. A commercially available software ANSYS is used for the FE calculations. Analysis is done for two different blade geometries and then suggestions are made for optimum design parameters. The relationship between impeller natural frequency and rotating speed is also determined based on dynamic characteristics analysis.


Author(s):  
K. N Chethan ◽  
V Sabarinathan ◽  
R Vivek Ram ◽  
G. T Mahesh

The high-performance plastics usage is increasing in the automobile field because of its advantages over other metals and alloys. Corrosion resistance, light weight, low cost, flexibility in design are the major advantages of plastics above the conventional metallic materials. In this paper a metal version component converted into plastic version in order to increase efficiency, reduce the overall cost of a two-wheeler and to improve the production rate of component. Different types of material such as PP + 15% TALC, PP + 30% GF, PP + 30% TALC, Nylon 6 + 15% GF, Nylon 66 UF, Nylon 6 UF, Nylon 66 + 30% GF, ASA LI941 and ASA LI913 tested for 10,000km road test, vibration test and fitment test. An injection moulding used to produce the component and ‘Mouldx3D’ software was used for mould flow analysis and other simulation. The different parts of injection moulding tool made up of C45, P20 and D2 materials. Among different materials, ASA LI913 was selected since it has better weather resistance than others and the impact strength matched to metal version component. Finally, it was found that the cost of the component made of Plastic considerably less than same component made of metal.


2021 ◽  
Vol 2 (4) ◽  
pp. 165-170
Author(s):  
Jennifer S. Raj

There has been a rapid growth in research towards developing smart, low-cost, and high-performance unmanned aerial vehicles (UAVs) for enabling wireless data transfer and communication. The practical applications of UAVs in healthcare, surveillance, agriculture and other domains is increasing at a faster pace. Mass production of these UAVs is essential to meet the growing communication requirements. Plans towards standardization and global deployment of Internet-of-Things (IoT) technologies and fifth generation (5G) wireless communication are in progress. Functional diversity is established by the UAVs in enabling wireless communication with IoT and 5G technologies. The different UAVs used in wireless communication is studied and a hierarchical architecture is proposed to facilitate integrating these technologies into next-generation networks. The principles of aerodynamics, wireless communication, power transfer, area of coverage, delay, meteorological impacts and other design parameters and their tradeoffs is analyzed.


Author(s):  
P.Venu Gopala Rao ◽  
Eslavath Raja ◽  
Ramakrishna Gandi ◽  
G. Ravi Kumar

IoT (Internet of Things) has become most significant area of research to design an efficient data enabled services with the help of sensors. In this paper, a low-cost system design for e-healthcare service to process the sensitive health data is presented. Vital signs of the human body are measured from the patient location and shared with a registered medical professional for consultation. Temperature and heart rate are the major signals obtained from a patient for the initial build of the system. Data is sent to a cloud server where processing and analysis is provided for the medical professional to analyze. Secure transmission and dissemination of data through the cloud server is provided with an authentication system and the patient could be able to track his data through a smart phone on connecting to the cloud server. A prototype of the system along with its design parameters has been discussed.


2020 ◽  
Vol 16 (3) ◽  
pp. 246-253
Author(s):  
Marcin Gackowski ◽  
Marcin Koba ◽  
Stefan Kruszewski

Background: Spectrophotometry and thin layer chromatography have been commonly applied in pharmaceutical analysis for many years due to low cost, simplicity and short time of execution. Moreover, the latest modifications including automation of those methods have made them very effective and easy to perform, therefore, the new UV- and derivative spectrophotometry as well as high performance thin layer chromatography UV-densitometric (HPTLC) methods for the routine estimation of amrinone and milrinone in pharmaceutical formulation have been developed and compared in this work since European Pharmacopoeia 9.0 has yet incorporated in an analytical monograph a method for quantification of those compounds. Methods: For the first method the best conditions for quantification were achieved by measuring the lengths between two extrema (peak-to-peak amplitudes) 252 and 277 nm in UV spectra of standard solutions of amrinone and a signal at 288 nm of the first derivative spectra of standard solutions of milrinone. The linearity between D252-277 signal and concentration of amironone and 1D288 signal of milrinone in the same range of 5.0-25.0 μg ml/ml in DMSO:methanol (1:3 v/v) solutions presents the square correlation coefficient (r2) of 0,9997 and 0.9991, respectively. The second method was founded on HPTLC on silica plates, 1,4-dioxane:hexane (100:1.5) as a mobile phase and densitometric scanning at 252 nm for amrinone and at 271 nm for milrinone. Results: The assays were linear over the concentration range of 0,25-5.0 μg per spot (r2=0,9959) and 0,25-10.0 μg per spot (r2=0,9970) for amrinone and milrinone, respectively. The mean recoveries percentage were 99.81 and 100,34 for amrinone as well as 99,58 and 99.46 for milrinone, obtained with spectrophotometry and HPTLC, respectively. Conclusion: The comparison between two elaborated methods leads to the conclusion that UV and derivative spectrophotometry is more precise and gives better recovery, and that is why it should be applied for routine estimation of amrinone and milrinone in bulk drug, pharmaceutical forms and for therapeutic monitoring of the drug.


Sign in / Sign up

Export Citation Format

Share Document