Mechanical Design of Wound Composite Impeller Using FEM

Author(s):  
Jifeng Wang ◽  
Mohit Patil ◽  
Jorge Olortegui-Yume ◽  
Norbert Mu¨ller

A low-cost, light-weight, high-performance, composite turbomachinery impeller with uniquely designed blade patterns is analyzed. Such impellers can economically enable refrigeration plants to use water as a refrigerant (R718). A stress and vibration analyses procedure is developed to assess the maximum stresses and natural frequencies of these wound composite axial impellers under operating loading conditions using Finite Element Method. A commercially available software ANSYS is used for the FE calculations. Analysis is done for two different blade geometries and then suggestions are made for optimum design parameters. The relationship between impeller natural frequency and rotating speed is also determined based on dynamic characteristics analysis.

2012 ◽  
Vol 2 (1) ◽  
Author(s):  
Jifeng Wang ◽  
Jorge Olortegui-Yume ◽  
Norbert Müller

AbstractA low cost, light weight, high performance composite material turbomachinery impeller with a uniquely designed blade patterns is analyzed. Such impellers can economically enable refrigeration plants to use water as a refrigerant (R718). A strength and dynamic characteristics analyses procedure is developed to assess the maximum stresses and natural frequencies of these wound composite axial impellers under operating loading conditions. Numerical simulation using FEM for two-dimensional and three-dimensional impellers was investigated. A commercially available software ANSYS is used for the finite element calculations. Analysis is done for different blade geometries and then suggestions are made for optimum design parameters. In order to avoid operating at resonance, which can make impellers suffer a significant reduction in the design life, the designer must calculate the natural frequency and modal shape of the impeller to analyze the dynamic characteristics. The results show that using composite Kevlar fiber/epoxy matrix enables the impeller to run at high tip speed and withstand the stresses, no critical speed will be matched during start-up and shut-down, and that mass imbalances of the impeller shall not pose a critical problem.


Author(s):  
J Wang ◽  
J Piechna ◽  
J A O Yume ◽  
N Müller

A stability analysis is developed to assess the stresses and dynamic characteristics of the wound composite material axial impeller under centrifugal force loading conditions. This procedure is based on finite element analysis (commercial software ABAQUS) results. A low-cost, light-weight, high-performance composite turbomachinery impeller with a uniquely designed blade patterns is evaluated. Understanding the stress–strain behaviour of fibre-reinforced composite laminates as it relates to ultimate failure and the ability to predict ultimate strength is critical in the design of safe and lightweight impellers. To determine failures, the maximum stress failure criterion is used. In order to avoid operating at resonance, which can make impellers suffer a significant reduction in the design life, the designer must calculate the natural frequency and modal shape of the impeller to analyse the dynamic characteristics. The results show that using composite Kevlar fibre/epoxy matrix enables the impeller to run at a rotating speed 2228 rad/s and withstand the stresses, no critical speed will be matched during start-up and shut-down, and that mass imbalances of the impeller shall not pose a critical problem.


Robotica ◽  
2021 ◽  
pp. 1-19
Author(s):  
Shengjie Wang ◽  
Kun Wang ◽  
Chunsong Zhang ◽  
Jian S Dai

Abstract A kinetostatic approach applied to the design of a backflip strategy for quadruped robots is proposed in this paper. Inspired by legged animals and taking the advantage of the leg workspace, this strategy provides an optimal design idea for the low-cost quadruped robots to achieve self-recovery after overturning. Through kinetostatic and energy analysis, a four-stepped backflip strategy based on the selected rotation axis with minimum energy is proposed, with a process of selection, lifting, rotating, and protection. The kinematic factors that affect the backflip are investigated, along with the relationship between the design parameters of the leg and trunk being analyzed. At the end of this paper, the strategy is validated by a simulation and experiments with a prototype called DRbot, demonstrating that the strategy endows the robot a strong self-recovery ability in various terrains.


Author(s):  
Jifeng Wang ◽  
Qubo Li ◽  
Norbert Mu¨ller

A mechanical and optimal analyses procedure is developed to assess the stresses and deformations of Novel Wound Composite Axial-Impeller under loading conditions particular to centrifuge. This procedure is based on an analytical method and Finite Element Analysis (FEA, commercial software ANSYS) results. A low-cost, light-weight, high-performance, composite turbomachinery impeller from differently designed patterns will be evaluated. Such impellers can economically enable refrigeration plants using water as a refrigerant (R718). To create different complex patterns of impellers, MATLAB is used for creating the geometry of impellers, and CAD software UG is used to build three-dimensional impeller models. Available loading conditions are: radial body force due to high speed rotation about the cylindrical axis and fluid forces on each blade. Two-dimensional plane stress and three-dimensional stress finite element analysis are carried out using ANSYS to validate these analytical mechanical equations. The von Mises stress is investigated, and maximum stress and Tsai-Wu failure criteria are applied for composite material failure, and they generally show good agreement.


Author(s):  
Junhong Zhang ◽  
Xin Lu ◽  
Jiewei Lin ◽  
Liang Ma ◽  
Huwei Dai

In this paper, a dynamic model of a “0-2-1” rotor system with rubbing fault between blade and abradable coated casings is developed. The sub-model of rubbing force considers scraping work energy of coating, casing stiffness, and initial clearance between blade tip and casing. A rotor rig is established and samples of abradable coatings are introduced into the rubbing experiment. Vibration characteristics of the rotor system under blade-casing rubbing fault are analyzed. Effects of rotating speed and initial clearance on the rub force and the system vibration are studied. Results show that the vibration of rotor focuses on the fundamental and multiple fundamental frequencies due to the blade-casing rubbing with the abradable coating. The multiple fundamental frequencies, the 2 × and 3 × in particular, are greatly affected by the rotating speed. The fractional harmonic frequencies are strongly influenced by the initial clearance between the blade tip and casing. Besides, the rotating speed and the initial clearance between the blade tip and abradable coating on the casing also affect the amplitude and distribution of the rub force.


2013 ◽  
Vol 641-642 ◽  
pp. 342-345 ◽  
Author(s):  
Ya Jun Wang ◽  
Chang Ying Guo ◽  
Yan Feng Tian ◽  
Jian Jun Wang

Nine groups of cement mortar with different mix proportion were designed to measure their fluidity 0h, 0.25h, 0.5h, 0.75h and 1h later, compressive strength and rupture strength of 3d, 7d and 28d were also tested to find out the relationship between compressive strength, rupture strength, water-cement ratio and sand-cement ratio by software Origin. Considered the three factors above, the optimum mixture ratio was determined finally to meet the requirements.


2014 ◽  
Vol 625 ◽  
pp. 213-218 ◽  
Author(s):  
Masatoshi Shindou ◽  
Hiroyuki Kodama ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama

In this study, we perform the end-mill process of a difficult-to-cut material (JIS SUS310 stainless steel) and observe it with high performance infrared thermography. Considering the rotating angle of end-mill tool, a pixel temperature in each frame is investigated to obtain the tool temperature variation after cutting of each tooth in end-mill process. The tool temperature distribution can be analyzed at each rotating tool position in end-mill process from imageries, considering the relationship between the time duration of each frame and the rotating speed of an end-mill tool. Moreover, the tool/holder shape and the number of cutting teeth can be seen to affect the cutting temperature because the tool heat capacity and the heat input are different. The examination and analytical results show this method to be effective to estimate the tool temperature in the end-mill process sufficiently.


Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1435 ◽  
Author(s):  
Gang Wei ◽  
Coucong Gong ◽  
Keke Hu ◽  
Yabin Wang ◽  
Yantu Zhang

Hydroxyapatite (HA) has been widely used in fields of materials science, tissue engineering, biomedicine, energy and environmental science, and analytical science due to its simple preparation, low-cost, and high biocompatibility. To overcome the weak mechanical properties of pure HA, various reinforcing materials were incorporated with HA to form high-performance composite materials. Due to the unique structural, biological, electrical, mechanical, thermal, and optical properties, graphene has exhibited great potentials for supporting the biomimetic synthesis of HA. In this review, we present recent advance in the biomimetic synthesis of HA on graphene supports for biomedical applications. More focuses on the biomimetic synthesis methods of HA and HA on graphene supports, as well as the biomedical applications of biomimetic graphene-HA nanohybrids in drug delivery, cell growth, bone regeneration, biosensors, and antibacterial test are performed. We believe that this review is state-of-the-art, and it will be valuable for readers to understand the biomimetic synthesis mechanisms of HA and other bioactive minerals, at the same time it can inspire the design and synthesis of graphene-based novel nanomaterials for advanced applications.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4894
Author(s):  
Jun-Yi Wang ◽  
Yen-Hsun Chi ◽  
Jin-Hua Huang

High-performance composite Pd membranes were successfully fabricated using electroless plating with an EDTA-free bath. The plating started with employing the one-time addition of hydrazine. In the experiment, the hydrazine concentrations and plating bath volumes were systematically varied to optimize the plating. The optimum composite Pd membrane tube showed high H2 permeance of 4.4 × 10−3 mol/m2 s Pa0.5 and high selectivity of 1.6 × 104, but poor cycling stability. Then, a method of sequential addition of the hydrazine from the high to low concentrations was employed. The resultant membrane, about 6 μm thick, still exhibited a high selectivity of 6.8 × 104 as well as a much-improved plating yield and cycling stability level; this membrane outperformed the membrane made using the unmodified plating technique with the EDTA-contained bath. This result indicates the EDTA-free bath combined with the sequential addition of hydrazine is a simple, low-cost, yet effective method for preparing thin, dense composite Pd membranes featuring high hydrogen permeation flux and high thermal durability.


Sign in / Sign up

Export Citation Format

Share Document