scholarly journals In vitro Microrhizome Induction and Essential Oil Production from Aromatic Ginger Kaempferia galanga : An Economically Important Medicinal Herb

2021 ◽  
Vol 14 (4) ◽  
pp. 1591-1599
Author(s):  
Vidya VR

Kaempferia galanga L. or ‘aromatic ginger’ is a stem-less herb in Zingiberaceae having different pharmacological properties like antioxidant, antimicrobial, nemeticidal, vasorelaxant and wound healing activity. The plant is generally a vegetatively propagated annual herb; its conservation using conventional methods takes more time to get sufficient amount of planting materials for commercial cultivation. Micropropagation by in vitro methods helps to overcome the present demand for this high sought medicinal and aromatic species. At present the concern on in vitro propagation is directed to rhizome or storage organ induction for productive acclimatization and to reduce the injury during transportation. Microrhizomes are the small rhizomes developed in in vitro conditions and its induction is an effective biotechnological tool for the production of quality planting materials as they are genetically stable and disease free. The present study is discussing the role of silver nitrate (AgNO3) along with sucrose in in vitro microrhizome induction in K. galanga for the first time. MS medium fortified with 2.0 mgl-1 AgNO3 along with 6% (w/v) sucrose produced maximum amount of microrhizomes i.e., 4.52±0.11 g after 3 months that increased to 5.70±0.20 g in six months of harvesting. Here we also reports the comparative analysis of chemical constituents in the essential oil of in vivo rhizomes and in vitro microrhizome through GC-MS analysis that further reveals the superior characteristics of the microrhizomes in terms of the bioactive components ethyl p-methoxy cinnamate and ethyl cinnamate, the esters that contribute the nematicidal, antituberculosis, anti-inflammatory, antifungal and larvicidal properties to the oil. This protocol for in vitro microrhizome induction can be used for the commercial production of rhizomes and essential oil in K. galanga and the outcome of this study can be further used for mass production of pathogen-free microrhizomes and conservation for its sustainable utilization of the species.

2020 ◽  
Vol 26 ◽  
Author(s):  
Waqas Alam ◽  
Haroon Khan ◽  
Sajjad Ali Khan ◽  
Sana Nazir ◽  
Esra Kupeli Akkol

: Datura metel (Solanaceae) which is commonly known as thorn’s apple, Indian apple or devil’s trumpet isan annual herb of temperate zones which is distributed all over the world. D. metel belongs to the family solanaceae. From longer period of time (37 A.D), species of this family had therapeutic uses. This article is based on the review of different scientific backgrounds and studies regarding the traditional uses, phytochemistry, biochemical constituents and pharmacological uses of D. metel. This review is based on the facts of available literature review. Different researchers conducted researches and studies on D. metel and confirmed the presence of enormous chemical compounds like flavonoids, tropane alkaloids, tannins, saponins and withanolides. D. metel has been found to be pharmacologically important species because of its different pharmacological and traditional uses such as hepatoprotective, antiviral effect, antibacterial effect, anti-asthmatic, analgesic, antipyretic and nephroprotective effect, anticancer and antifungal effect. However, further in vivo and in vitro advanced studies are required to carried out for the exact pharmacological mechanisms and for basis of clinical utility.


2021 ◽  
Vol 19 (3) ◽  
pp. 449-466
Author(s):  
Nattha Vigad ◽  
◽  
Wattana Pelyuntha ◽  
Prapakorn Tarachai ◽  
Sunee Chansakaow ◽  
...  

A preparation of essential oils to control chicken lice (Menopon gallinae) and mites (Ornithonyssus bursa) was developed. Each essential oil was effective against lice and mite in vitro. Citronella oil at the lowest concentration of 0.208 µg/cm2 resulted in a mortality rate of 100% in chicken lice, whereas a higher concentration of cloves, lemongrass, ginger, Makwan oil (0.416 µg/cm2), and Litsea oil (0.832 µg/cm2) was also found to be effective. A 100% rate of mortality for mites was observed using citronella and ginger oil at a concentration of 0.416 µg/cm2. At the same concentration, cloves, lemongrass, Litsea, and Makwan oil exhibited mortality rates in mites of 77.96%, 93.33%, 87.30%, and 93.49%, respectively. The efficacy of citronella oil and ginger oil against lice and mites was further examined in vivo. Citronella and ginger oil affected the rate of decline in lice from day 1 to day 14, whereas the number of mites living in nests declined from day 1 to day 7. The reduction of these parasitic insects may be correlated with the chemical constituents present in each essential oil. The active ingredients likely acted insecticidal agents against both parasitic insects. Moreover, the preparation developed here did not cause any side effects, such as dermatitis and respiratory disorders, during animal trials. Hence, preparations comprised of the essential oils of citronella and ginger can be further developed and used as insecticidal agents to control and/or eliminate chicken lice and mites on commercial farms.


Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
B Demirci ◽  
T Kiyan ◽  
A Koparal ◽  
M Kaya ◽  
F Demirci ◽  
...  
Keyword(s):  

Author(s):  
Roohi Mohi-ud-din ◽  
Reyaz Hassan Mir ◽  
Prince Ahad Mir ◽  
Saeema Farooq ◽  
Syed Naiem Raza ◽  
...  

Background: Genus Berberis (family Berberidaceae), which contains about 650 species and 17 genera worldwide, has been used in folklore and various traditional medicine systems. Berberis Linn. is the most established group among genera with around 450-500 species across the world. This comprehensive review will not only help researchers for further evaluation but also provide substantial information for future exploitation of species to develop novel herbal formulations. Objective: The present review is focussed to summarize and collect the updated review of information of Genus Berberis species reported to date regarding their ethnomedicinal information, chemical constituents, traditional/folklore use, and reported pharmacological activities on more than 40 species of Berberis. Conclusion: A comprehensive survey of the literature reveals that various species of the genus possess various phytoconstituents mainly alkaloids, flavonoid based compounds isolated from different parts of a plant with a wide range of pharmacological activities. So far, many pharmacological activities like anti-cancer, anti-hyperlipidemic, hepatoprotective, immunomodulatory, anti-inflammatory both in vitro & in vivo and clinical study of different extracts/isolated compounds of different species of Berberis have been reported, proving their importance as a medicinal plant and claiming their traditional use.


Author(s):  
Hassan Ahmadvand ◽  
Majid Tavafi ◽  
Ali Khosrowbeygi ◽  
Gholamreza Shahsavari ◽  
Maryam Hormozi ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 819
Author(s):  
Nicolai Rügen ◽  
Timothy P. Jenkins ◽  
Natalie Wielsch ◽  
Heiko Vogel ◽  
Benjamin-Florian Hempel ◽  
...  

Assassin bug venoms are potent and exert diverse biological functions, making them potential biomedical goldmines. Besides feeding functions on arthropods, assassin bugs also use their venom for defense purposes causing localized and systemic reactions in vertebrates. However, assassin bug venoms remain poorly characterized. We collected the venom from the assassin bug Rhynocoris iracundus and investigated its composition and bioactivity in vitro and in vivo. It caused lysis of murine neuroblastoma, hepatoma cells, and healthy murine myoblasts. We demonstrated, for the first time, that assassin bug venom induces neurolysis and suggest that it counteracts paralysis locally via the destruction of neural networks, contributing to tissue digestion. Furthermore, the venom caused paralysis and melanization of Galleria mellonella larvae and pupae, whilst also possessing specific antibacterial activity against Escherichia coli, but not Listeria grayi and Pseudomonas aeruginosa. A combinatorial proteo-transcriptomic approach was performed to identify potential toxins responsible for the observed effects. We identified neurotoxic Ptu1, an inhibitory cystin knot (ICK) toxin homologous to ω-conotoxins from cone snails, cytolytic redulysins homologous to trialysins from hematophagous kissing bugs, and pore-forming hemolysins. Additionally, chitinases and kininogens were found and may be responsible for insecticidal and cytolytic activities. We demonstrate the multifunctionality and complexity of assassin bug venom, which renders its molecular components interesting for potential biomedical applications.


2021 ◽  
Author(s):  
Lijuan Liu ◽  
Shengting Zhang ◽  
Xiaodan Zheng ◽  
Hongmei Li ◽  
Qi Chen ◽  
...  

Fusobacterium nucleatum has been employed for the first time to synthesize fluorescent carbon dots which could be applied for the determination of Fe3+ ions in living cells and bioimaging in vitro and in vivo with excellent biocompatibility.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Tong Chen ◽  
Qiang Chu ◽  
Mengyang Li ◽  
Gaorong Han ◽  
Xiang Li

AbstractElectrodynamic therapy (EDT) has recently emerged as a potential external field responsive approach for tumor treatment. While it presents a number of clear superiorities, EDT inherits the intrinsic challenges of current reactive oxygen species (ROS) based therapeutic treatments owing to the complex tumor microenvironment, including glutathione (GSH) overexpression, acidity and others. Herein for the first time, iron oxide nanoparticles are decorated using platinum nanocrystals (Fe3O4@Pt NPs) to integrate the current EDT with chemodynamic phenomenon and GSH depletion. Fe3O4@Pt NPs can effectively induce ROS generation based on the catalytic reaction on the surface of Pt nanoparticles triggered by electric field (E), and meanwhile it may catalyze intracellular H2O2 into ROS via Fenton reaction. In addition, Fe3+ ions released from Fe3O4@Pt NPs under the acidic condition in tumor cells consume GSH in a rapid fashion, inhibiting ROS clearance to enhance its antitumor efficacy. As a result, considerable in vitro and in vivo tumor inhibition phenomena are observed. This study has demonstrated an alternative concept of combinational therapeutic modality with superior efficacy.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Miao-Miao Zhao ◽  
Wei-Li Yang ◽  
Fang-Yuan Yang ◽  
Li Zhang ◽  
Wei-Jin Huang ◽  
...  

AbstractTo discover new drugs to combat COVID-19, an understanding of the molecular basis of SARS-CoV-2 infection is urgently needed. Here, for the first time, we report the crucial role of cathepsin L (CTSL) in patients with COVID-19. The circulating level of CTSL was elevated after SARS-CoV-2 infection and was positively correlated with disease course and severity. Correspondingly, SARS-CoV-2 pseudovirus infection increased CTSL expression in human cells in vitro and human ACE2 transgenic mice in vivo, while CTSL overexpression, in turn, enhanced pseudovirus infection in human cells. CTSL functionally cleaved the SARS-CoV-2 spike protein and enhanced virus entry, as evidenced by CTSL overexpression and knockdown in vitro and application of CTSL inhibitor drugs in vivo. Furthermore, amantadine, a licensed anti-influenza drug, significantly inhibited CTSL activity after SARS-CoV-2 pseudovirus infection and prevented infection both in vitro and in vivo. Therefore, CTSL is a promising target for new anti-COVID-19 drug development.


2020 ◽  
Vol 54 (01) ◽  
pp. 37-46
Author(s):  
Kristina Friedland ◽  
Giacomo Silani ◽  
Anita Schuwald ◽  
Carola Stockburger ◽  
Egon Koch ◽  
...  

Abstract Background Silexan, a special essential oil from flowering tops of lavandula angustifolia, is used to treat subsyndromal anxiety disorders. In a recent clinical trial, Silexan also showed antidepressant effects in patients suffering from mixed anxiety-depression (ICD-10 F41.2). Since preclinical data explaining antidepressant properties of Silexan are missing, we decided to investigate if Silexan also shows antidepressant-like effects in vitro as well as in vivo models. Methods We used the forced swimming test (FST) in rats as a simple behavioral test indicative of antidepressant activity in vivo. As environmental events and other risk factors contribute to depression through converging molecular and cellular mechanisms that disrupt neuronal function and morphology—resulting in dysfunction of the circuitry that is essential for mood regulation and cognitive function—we investigated the neurotrophic properties of Silexan in neuronal cell lines and primary hippocampal neurons. Results The antidepressant activity of Silexan (30 mg/kg BW) in the FST was comparable to the tricyclic antidepressant imipramine (20 mg/kg BW) after 9-day treatment. Silexan triggered neurite outgrowth and synaptogenesis in 2 different neuronal cell models and led to a significant increase in synaptogenesis in primary hippocampal neurons. Silexan led to a significant phosphorylation of protein kinase A and subsequent CREB phosphorylation. Conclusion Taken together, Silexan demonstrates antidepressant-like effects in cellular as well as animal models for antidepressant activity. Therefore, our data provides preclinical evidence for the clinical antidepressant effects of Silexan in patients with mixed depression and anxiety.


Sign in / Sign up

Export Citation Format

Share Document