scholarly journals Instrumented indentation for determination of full range stress-strain curves

2014 ◽  
Vol 5 (1) ◽  
pp. 6
Author(s):  
Andreas De Smedt ◽  
Stijn Hertelé ◽  
Matthias Verstraete ◽  
Koen Van Minnebruggen ◽  
Wim De Waele

One common method for the determination of full range stress-strain curves by instrumented indentation is presented and validated for an aluminium alloy. This method relates properties describing the indentation force-depth curve with those describing the uniaxial stress-strain curve as traditionally obtained from a tensile test. The first aim of this paper is to explain the basic concepts of instrumented indentation. Next, the analysis method is presented and validated. This study ends with discussing the uniqueness of the obtained solution. It is concluded that accurate determination of stress-strain behaviour can be realized, but for certain materials two indentations are needed.

1986 ◽  
Vol 18 (5) ◽  
pp. 664-668
Author(s):  
M. V. Shakhmatov ◽  
V. V. Erofeev ◽  
V. A. Lupin ◽  
A. A. Ostsemin

Author(s):  
K. J. Thompson ◽  
R. Park

The stress-strain relationship of Grade 275 steel reinforcing bar under cyclic (reversed) loading is examined using experimental results obtained previously from eleven test specimens to which a variety of axial loading cycles has been applied. A Ramberg-Osgood function is fitted to the experimental stress-strain curves to follow the cyclic stress-strain behaviour after the first load run in the plastic range. The empirical constants in the function are determined by regression analysis and are found to depend mainly on the plastic strain imposed
in the previous loading run. The monotonic stress-strain curve for the steel, with origin of strains suitably adjusted, is assumed to be the envelope curve giving the upper limit of stress. The resulting Ramberg-Osgood expression and envelope is found to give good agreement with the experimentally measured cyclic stress-strain curves.


2018 ◽  
Vol 199 ◽  
pp. 09011
Author(s):  
Pengda Li ◽  
Yingwu Zhou ◽  
Ningxu Han ◽  
Feng Xing

This paper presents the results of an experimental study on the behaviour of pre-damaged concrete square columns that have been strengthened with carbon fibre-reinforced polymer (CFRP) wrap. Tests were conducted on 46 concrete columns involving variations of corner radius ratio, damage degree, and confinement pressure. The effect of corner radius on the main parameters of stress-strain curve for FRP strengthened pre-damaged specimens, such as compressive strength, strain capacity, initial elastic modulus, was investigated. The test results demonstrated that the efficiency of repairing damaged columns significantly depends on the corner radius ratio, the strength gain after FRP-strengthening decreases as the corner radius ratio reduces. Using those test data, new ultimate strength and ultimate strain model are proposed. The proposed models involved the effect of both corner radius and damage level, showing good agreement with the experimental results.


2010 ◽  
Vol 25 (12) ◽  
pp. 2297-2307 ◽  
Author(s):  
Baoxing Xu ◽  
Xi Chen

The engineering stress–strain curve is one of the most convenient characterizations of the constitutive behavior of materials that can be obtained directly from uniaxial experiments. We propose that the engineering stress–strain curve may also be directly converted from the load–depth curve of a deep spherical indentation test via new phenomenological formulations of the effective indentation strain and stress. From extensive forward analyses, explicit relationships are established between the indentation constraint factors and material elastoplastic parameters, and verified numerically by a large set of engineering materials as well as experimentally by parallel laboratory tests and data available in the literature. An iterative reverse analysis procedure is proposed such that the uniaxial engineering stress–strain curve of an unknown material (assuming that its elastic modulus is obtained in advance via a separate shallow spherical indentation test or other established methods) can be deduced phenomenologically and approximately from the load–displacement curve of a deep spherical indentation test.


1966 ◽  
Vol 39 (5) ◽  
pp. 1489-1495
Author(s):  
L. C. Case ◽  
R. V. Wargin

Abstract A new theoretical treatment strongly indicates that an elastomer network actually consists of a system of fused, closed, interpenetrating loops of polymer chains. This interpenetrating loop structure restricts the movement of the chains and thereby affects the stress-strain behavior of the elastomer. Methods have been developed to enable the calculation of the number of effective crosslinks caused by loop interpenetrations (virtual crosslinks). The uniaxial stress-strain behavior of an elastomer predicted using our methods can be fitted almost perfectly to published experimental data by proper selection of chain parameters. Previous theoretical treatments gave only a qualitative fit to the experimental data for the stress-strain behavior of elastomers and were not capable of predicting the correct shape of the experimental stress-strain curve. The present treatment gives a nearly perfect fit for both stress as a function of strain at constant crosslink density, and stress as a function of crosslink density at constant strain, and thus represents a vast improvement.


Sign in / Sign up

Export Citation Format

Share Document