scholarly journals Estudo do Espectro de Absorção do Vermelho de Metila.

Author(s):  
Jefferson Lorençoni de Morais ◽  
Yago Francisco Lopes ◽  
Poliana Maia da Silva ◽  
Clodoaldo Valverde ◽  
Vikas Mahendra Sharma

Methyl red or known as methyl red, also called C.I.Acid Red 2, C.I. 13020, is a Ph indicator dye that turns red in acidic solutions. It is an azo dye and appears as a dark red crystalline powder. Its molecular formula is C15H15N3O2, which has a molar mass of 269,299 g / mol and a melting point of 179-182oC. The objective of this work is to verify the molecular geometry, and the electronic absorption behavior of this compound, mainly how it behaves in the state of water, acetone, ethanol and methanol. The methodology used is the calculation of the absorption spectrum in the visible ultraviolet range, used in the DFT method with the functional B3LYP and in the 6-311 + G (d, p). Also used on the Hirsfeld surface, seeing the behavior of electronic density in the strong and weak nuclear bonds that occur at the points of hydrogen and oxygen bonds. With this study of the absorption and surface properties of Hirsfeld, we can see how its electronic state behaves, leading to an understanding of how methyl red can be a good indicator of pH count.

1979 ◽  
Vol 237 (1) ◽  
pp. E82
Author(s):  
S J Hersey

Intracellular pH was measured in bullfrog gastric mucosa using a pH-indicator dye, bromthymol blue (BTB), with a spectrophotometric technique. Studies showed that BTB is taken up by the gastric mucosa and bound to intracellular components. The binding of BTB was shown to cause a shift in the pKa of the dye from the solution value of 6.95 to a value of 8.0. During the nonsecreting state, intracellular pH was estimated to be 7.4 (metiamide inhibition) or 7.1 (SCN inhibition). During active secretion of acid, intracellular pH increased with increasing secretion rates, reaching values in excess of pH 8. Using preparations from which the surface epithelial cells had been removed, it was shown that at least a portion of the alkaline response to stimulation occurs in the oxyntic or tubular cells. The results are interpreted in view of existing models for the chemical reaction involved in gastric acid secretion.


Author(s):  
Johan Urdaneta ◽  
Humberto Soscún ◽  
Ana Ocando ◽  
Alberto Campos

  La óptica no lineal (NLO, por sus siglas en inglés de: No Linear Optics) se ha desarrollado en los últimos años como un importante campo de investigación debido a su aplicabilidad en la fotoelectrónica y tecnología fotónica. En las últimas décadas los complejos organometálicos se han convertido en una clase de moléculas de gran interés en NLO. Estos complejos combinan las ventajas de las moléculas orgánicas con las ofrecidas por las sales inorgánicas. En este trabajo se realizó un estudio mecano-cuántico computacional de la contribución electrónica en fase gas de las propiedades ópticas del difosfaferroceno a nivel estático, empleando el método DFT CAM-B3LYP y el conjunto base 6-31+G(d,p), en conjunto con la metodología de campo finito basadas en la ecuaciones de Kurtz. Adicionalmente se realizaron cálculos para el ferroceno a modo comparativo. La comparación teoría-experimentales, muestra que la metodología empleada proporciona valores comparables, mostrando una correspondencia de 93 % para aave, y un 87 % para gave. Con respecto a las propiedades ópticas, se observa que el complejo de difosfaferroceno es mayormente polarizable que el ferroceno. Sin embargo, las mayores contribuciones se observan en las propiedades NLO, donde para b la respuesta calculada para el complejo difosfaferroceno es 72 ua, a diferencia de ferroceno el cual no presenta respuesta por ser una molécula centro simétrica. En gave, la respuesta es casi dos veces superior. Estos resultados permiten inferir que la interacción de anillos fosfolil con el átomo de Fe origina una mayor perturbación o deslocalización de la densidad electrónica de la molécula, promoviendo así elevadas respuestas ópticas cuando se aplican campos eléctricos, catalogándolo como un candidato potencial para el diseño de nuevos materiales NLO.   Palabras clave: NLO, difosfaferroceno, óptica, DFT, (hiper)polarizabilidades.   Abstract Non linear optics (NLO) has been developed in recent years as an important field of research due to its applicability in photoelectronics and photonic technology. In recent decades organometallic complexes have become a class of molecules of great interest in NLO. These complexes combine the advantages of organic molecules with the ones offered by inorganic salts. In this work, a computational quantum mechanics study of the electronic contribution in gas phase of the optical properties of diphosphaferrocene at a static level was carried out, using the CAM-B3LYP DFT Method and the 6-31+G(d,p) basic set, together with the finite field methodology based on Kurtz equations. Additionally, the ferrocene molecule was studied for comparison purposes. The theory-experimental comparison shows that the methodology used provides comparable values, showing a 93% correspondence for aave, and 87% for gave. With respect to the optical properties, it is observed that the diphosphaferrocene complex is mostly more polarizable than ferrocene. However, the greatest contributions are observed in the NLO properties, where for b, the calculated response for the diphosphaferrocene complex is 72 ua, different from, which does not respond because it is a symmetric center molecule. In gave, the answer is almost double. These results allow us to infer that the interaction of phospholyl rings with the Fe atom causes a greater perturbation or delocalization of the electronic density of the molecule, promoting high optical responses when an electric field is applied, cataloging it as a potential candidate for the design of new NLO materials.   Key words: NLO, diphosphaferrocene, optics, DFT, (hyper) polarizabilities.


2020 ◽  
Author(s):  
Katharina Seelmann ◽  
Martha Gledhill ◽  
Steffen Aßmann ◽  
Arne Körtzinger

Abstract. Due to its accurate and precise character, the spectrophotometric pH detection is a common technique applied in measurement methods for carbonate system parameters. However, impurities in the used pH indicator dyes can influence the measurements quality. The work described here focuses on influences from impurities in the pH indicator dye bromocresol green (BCG) on spectrophotometric seawater total alkalinity (AT) measurements. First, a high-performance liquid chromatography (HPLC) purification method for BCG was developed. A subsequent analysis of BCG dye from four different vendors with this method revealed different types and quantities of impurities. After successful purification, AT measurements with purified and unpurified BCG were carried out using the novel autonomous analyzer CONTROS HydroFIA® TA. Long-term measurements in the laboratory revealed a direct influence of impurity types and quantities on the drift behavior of the analyzer. The purer the BCG, the smaller was the drift increment per measurement. Furthermore, we could show that a certain impurity in some indicator dyes changed the drift pattern from linear to non-linear, which can impair the AT measurements during a long-term deployment of the system. Laboratory performance characterization experiments revealed no improvement of the measurement quality (precision and accuracy) by using purified BCG as long as the impurities of the unpurified dye do not exceed a quantity of 2 % (relationship of peak areas in the chromatogram). However, BCG with impurity quantities higher than 6 % provided AT values, which failed fundamental quality requirements. Concluding, to gain optimal AT measurements, an indicator purification is not necessarily required as long as the purchased dye has a purity level of at least 98 %.


2021 ◽  
Vol 249 (1) ◽  
pp. 31-41
Author(s):  
Rachel A Davey ◽  
Michele V Clarke ◽  
Suzanne B Golub ◽  
Patricia K Russell ◽  
Jeffrey D Zajac

The physiological role of calcitonin, and its receptor, the CTR (or Calcr), has long been debated. We previously provided the first evidence for a physiological role of the CTR to limit maternal bone loss during lactation in mice by a direct action on osteocytes to inhibit osteocytic osteolysis. We now extend these findings to show that CTR gene expression is upregulated two- to three-fold in whole bone of control mice at the end of pregnancy (E18) and lactation (P21) compared to virgin controls. This was associated with an increase in osteoclast activity evidenced by increases in osteoclast surface/bone surface and Dcstamp gene expression. To investigate the mechanism by which the CTR inhibits osteocytic osteolysis, in vivo acidification of the osteocyte lacunae during lactation (P14 days) was assessed using a pH indicator dye. A lower pH was observed in the osteocyte lacunae of lactating Global-CTRKOs compared to controls and was associated with an increase in the gene expression of ATPase H+ transporting V0 subunit D2 (Atp6v0d2) in whole bone of Global-CTRKOs at the end of lacation (P21). To determine whether the CTR is required for the replacement of mineral within the lacunae post-lactation, lacunar area was determined 3 weeks post-weaning. Comparison of the largest 20% of lacunae by area did not differ between Global-CTRKOs and controls post-lactation. These results provide evidence for CTR activation to inhibit osteocytic osteolysis during lactation being mediated by regulating the acidity of the lacunae microenvironment, whilst the CTR is dispensable for replacement of bone mineral within lacunae by osteocytes post-lactation.


1977 ◽  
Vol 32 (7-8) ◽  
pp. 617-626 ◽  
Author(s):  
Satham Saphon ◽  
Antony R. Crofts

Using pH indicator dye techniques we have investigated the pH changes in dark-adapted chloro- plasts following excitation by short flashes. Two types of pH indicator, cresol red and neutral red, were used, to follow the pH changes either inside or outside the thylakoids, or the net change when the membrane was made permeable to protons by uncoupling agents. (1)With cresol red which showed the net pH changes inside and outside the thylakoids, an oscillation of the flash yield of H+ occurred with a periodicity of 4 (minima on the first and fifth flashes, the yield on the third being not significantly different from the yields on the second and fourth flashes). The pH changes did not occur in synchrony with O2-evolution. (2)The net flash yields without addition of electron acceptor were similar to those with benzyl- viologen. The results were comparable with those obtained with the glass electrode technique by Fowler and Kok (C. F. Fowler and B. Kok, Biochim. Biophys. Acta 357, 299 - 307 [1974]). (3)The net flash yields with ferricyanide as electron acceptor of photosystem I were higher than those in the absence of acceptor, or with benzylviologen. On the first and fifth flashes a net acidification was always observed. (4)In the presence of 3- (3,4-dichlorphenyl) -1,1-dimethylurea (DCMU) a rapid acidification also occured on the first flash, while the pH changes induced by subsequent flashes were inhibited. (5)The uncoupler methylamine did not inhibit the proton uptake outside the thylakoids. (6)With neutral red as indicator for the net pH change inside and outside the thylakoids, the same oscillation of the flash yield occured as with cresol red. (7)With neutral red in the precense of an external buffer, as a pH indicator for the internal aqueous phase alone, an oscillation of the flash yield with a periodicity of 4 also occured. The first and second flash yields were higher compared with the third than the equivalent yields of oxygen. (8)We discuss the results with respect to a model for the release of protons in the water- splitting enzyme reactions, in which protons are not released in synchrony with O2 , but in the transitions of all the states of the watersplitting enzyme with the exception of S1 → S2 . Our results are consistent with this model when account is taken of the release of protons inside the thylakoids with a periodicity of 2, associated with electron transfer from reduced plastoquinone.


Ocean Science ◽  
2020 ◽  
Vol 16 (2) ◽  
pp. 535-544
Author(s):  
Katharina Seelmann ◽  
Martha Gledhill ◽  
Steffen Aßmann ◽  
Arne Körtzinger

Abstract. Due to its accurate and precise character, spectrophotometric pH detection is a common technique applied in measurement methods for carbonate system parameters. However, impurities in the used pH indicator dyes can influence the measurements quality. During our work described here, we focused on impacts of impurities in the pH indicator dye bromocresol green (BCG) on spectrophotometric seawater total alkalinity (AT) measurements. In order to evaluate the extent of such influences, purified BCG served as a reference. First, a high-performance liquid chromatography (HPLC) purification method for BCG was developed as such a method did not exist at the time of this study. An analysis of BCG dye from four different vendors with this method revealed different types and quantities of impurities. After successful purification, AT measurements with purified and unpurified BCG were carried out using the novel autonomous analyzer CONTROS HydroFIA® TA. Long-term measurements in the laboratory revealed a direct influence of impurity types and quantities on the drift behavior of the analyzer. The purer the BCG, the smaller was the AT increase per measurement. The observed drift is generally caused by deposits in the optical pathway mainly generated by the impurities. However, the analyzers drift behavior could not be fully overcome. Furthermore, we could show that a certain impurity type in some indicator dyes changed the drift pattern from linear to nonlinear, which can impair long-term deployments of the system. Consequently, such indicators are impractical for these applications. Laboratory performance characterization experiments revealed no improvement of the measurement quality (precision and bias) by using purified BCG as long as the impurities of the unpurified dye do not exceed a quantity of 2 % (relationship of peak areas in the chromatogram). However, BCG with impurity quantities higher than 6 % provided AT values which failed fundamental quality requirements. In conclusion, to gain optimal AT measurements especially during long-term deployments, an indicator purification is not necessarily required as long as the purchased dye has a purity level of at least 98 % and is free of the named impurity type. Consequently, high-quality AT measurements do not require pure but the purest BCG that is purchasable.


1990 ◽  
Vol 96 (3) ◽  
pp. 449-471 ◽  
Author(s):  
S M Baylor ◽  
S Hollingworth

Singly dissected twitch fibers from frog muscle were studied on an optical bench apparatus after micro-injection with the pH indicator dye, phenol red. Dye-related absorbances in myoplasm, denoted by A0(lambda) and A90(lambda), were estimated as a function of wavelength lambda (450 nm less than or equal to lambda less than or equal to 640 nm) with light polarized parallel (0 degrees) and perpendicular (90 degrees) to the fiber axis respectively. At all lambda, A0(lambda) was slightly greater than A90(lambda), indicating that some of the phenol red molecules were bound to oriented structures accessible to myoplasm. The phenol red "isotropic" signal, [A0(lambda) + 2A90(lambda)]/3, a quantity equal to the average absorbance of all the dye molecules independent of their orientation, had a spectral shape that was red-shifted by approximately 10 nm in comparison with in vitro dye calibration curves measured in 140 mM KCl. The red-shifted spectrum also indicates that some phenol red molecules were bound in myoplasm. A quantitative estimate of indicator binding was obtained from measurements of the dye's apparent diffusion constant in myoplasm, denoted by Dapp. The small value of Dapp, 0.37 x 10(-6) cm2 s-1 (at 16 degrees C), can be explained if approximately 80% of the dye was bound to myoplasmic sites of low mobility. To estimate the apparent myoplasmic pH, denoted by pHapp, the isotropic absorbance of phenol red was fitted by in vitro calibration spectra. pHapp was found to be independent of dye concentration (0.2-2 mM), but varied widely (range, 6.8-7.5; mean value, 7.17) among fibers judged from functional characteristics to be normal. When fibers were subjected to acid or alkaline loads by exposure to Ringer's solution containing, respectively, dissolved CO2 or NH3, the changes in pHapp were in agreement with those expected from pH micro-electrode studies. It is concluded that in spite of the several indications for the presence of bound phenol red inside muscle cells, the pHapp signal from the indicator is useful for monitoring changes in myoplasmic pH in response to physiological and pharmacological manipulations.


2020 ◽  
Vol 108 (8) ◽  
pp. 673-677
Author(s):  
Abd M. Rabie ◽  
Essam Fahim ◽  
Shadia A. Moniem ◽  
Mohamoud A. El Ahdal

AbstractAqueous solution of pH indicator dye tetrabromophenolphthalein ethyl ester containing chloral hydrate was studied for its possibility to be used as a liquid dosimeter. The useful measuring range was found to be (0.5–2 kGy) depending on the concentration of both dye and chloral hydrate added. The system has good stability before and after irradiation under different storage conditions. A comparison study between direct irradiation of the dye containing chloral hydrate and indirect method that executed through avoiding exposure of the dye to irradiation and irradiate the chloral hydrate only followed by outputs for interaction with dye was investigated seeking to extend the dose range up to 5 kGy.


Sign in / Sign up

Export Citation Format

Share Document