scholarly journals Cold Atmospheric Plasma (CAP) and CAP-Stimulated Cell Culture Media Suppress Ovarian Cancer Cell Growth – A Putative Treatment Option in Ovarian Cancer Therapy

2017 ◽  
Vol 37 (12) ◽  
2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e17558-e17558
Author(s):  
Alba Martínez ◽  
Molly Buckley ◽  
Joel Berry ◽  
Rebecca Christian Arend

e17558 Background: Epithelial Ovarian Cancer (EOC) is the most common cause of death among gynecological malignancies. This is a result of the high rate of recurrence and chemo-resistance in EOC patients. Therefore, the development of new therapeutics is crucial. A major factor contributing to this is the lack of therapeutic candidates is lack of translational accuracy in preclinical models. Recently, 3-dimensional (3-D) models have aided in accurately recreating tumor biology. We have developed an EOC 3-D perfused bioreactor system that recapitulates EOC tumor biology and incorporates tumor biomechanical regulation. This model allows for us to more accurately predict the clinical response of new drug candidates, which aids in elimination of ineffective candidates prior to clinical trials. Methods: EOC cell lines (luciferase-taggedSKOV-3 and OVCAR-8) were embedded in a relevant extracellular matrix (ECM) and injected into a perfused, polydimethylsiloxane (PDMS) bioreactor. Microchannels were embedded in matrigel so that the cell culture media with or without chemotherapy could flow through the perfused PDMS to provide nutrient delivery and gas exchange enhancing viability and function of surrounding cells. The bioreactors were connected to a peristaltic pump that allowed for the cell culture media to perfuse over a 7-day period. We monitored cell viability using bioluminescence imaging (BLI), immunohistochemistry (IHC), and lactate dehydrogenase (LDH) release in media. Results: BLI showed a linear increase in SKOV-3 and OVCAR-8 cell growth over 7 days. These results were confirmed by IHC measuring the number of nucleated cells per micron2. Graphical representation of the region of interest (ROI) showed a high correlation between IHC staining of nucleated cells and BLI score. IHC analysis of PAX8 staining was positive and proved that the perfusion bioreactor system maintains EOC biology over time. In addition, our results suggest that the bioreactor is a suitable model for drug preclinical testing in both cell lines as well as in patients’ samples. Conclusions: Our preliminary results using the 3D EOC perfused, PDMS bioreactor model showed increased EOC cell growth overtime, while maintaining original EOC histology. Moreover, our results suggest that this model could provide a novel platform to study therapeutic interventions in EOC. Our ultimate goal is to implement ovarian cancer microenvironment components (e.g. immune cells) into bioreactor system to study different drug treatments to better determine drug candidate’s translational efficacy.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2061
Author(s):  
Cecilia Pozzi ◽  
Matteo Santucci ◽  
Gaetano Marverti ◽  
Domenico D’Arca ◽  
Lorenzo Tagliazucchi ◽  
...  

Combining drugs represent an approach to efficiently prevent and overcome drug resistance and to reduce toxicity; yet it is a highly challenging task, particularly if combinations of inhibitors of the same enzyme target are considered. To show that crystallographic and inhibition kinetic information can provide indicators of cancer cell growth inhibition by combinations of two anti-human thymidylate synthase (hTS) drugs, we obtained the X-ray crystal structure of the hTS:raltitrexed:5-fluorodeoxyuridine monophosphate (FdUMP) complex. Its analysis showed a ternary complex with both molecules strongly bound inside the enzyme catalytic cavity. The synergistic inhibition of hTS and its mechanistic rationale were consistent with the structural analysis. When administered in combination to A2780 and A2780/CP ovarian cancer cells, the two drugs inhibited ovarian cancer cell growth additively/synergistically. Together, these results support the idea that X-ray crystallography can provide structural indicators for designing combinations of hTS (or any other target)-directed drugs to accelerate preclinical research for therapeutic application.


2007 ◽  
Vol 6 (5) ◽  
pp. 795-801 ◽  
Author(s):  
Dineo Khabele ◽  
Deok-Soo Son ◽  
Angelika K. Parl ◽  
Gary L. Goldberg ◽  
Leonard H. Augenlicht ◽  
...  

2007 ◽  
Vol 267 (1-2) ◽  
pp. 26-37 ◽  
Author(s):  
Y. Li ◽  
S. Ganta ◽  
C. Cheng ◽  
R. Craig ◽  
R.R. Ganta ◽  
...  

2020 ◽  
Vol 11 (11) ◽  
Author(s):  
Ling Chen ◽  
Shang Cai ◽  
Jing-mei Wang ◽  
Ying-ying Huai ◽  
Pei-Hua Lu ◽  
...  

AbstractBromodomain testis-specific factor (BRDT) is a member of the bromodomain and extra-terminal (BET) family proteins. Its expression and potential functions in ovarian cancer were examined. We show that BRDT is overexpressed in human ovarian cancer tissues and in established (CaOV3)/primary ovarian cancer cells. However, its expression is low in ovarian epithelial tissues and cells. Significantly, shRNA-induced silencing or CRISPR/Cas9-mediated knockout of BRDT inhibited ovarian cancer cell growth, viability, proliferation and migration, and induced significant apoptosis activation. Conversely, exogenous overexpression of BRDT, by a lentiviral construct, augmented CaOV3 cell proliferation and migration. In CaOV3 cells expression of two key BRDT target genes, polo-like kinase 1 (PLK1) and aurora kinase C (AURKC), was downregulated by BRDT shRNA or knockout, but upregulated with BRDT overexpression. In vivo, xenograft tumors-derived from BRDT-knockout CaOV3 cells grew significantly slower than control tumors in severe combined immunodeficient (SCID) mice. Furthermore, intratumoral injection of BRDT shRNA lentivirus potently inhibited the growth of primary ovarian cancer xenografts in SCID mice. Downregulation of PLK1 and AURKC was detected in BRDT-knockout and BRDT-silenced tumor tissues. Collectively, BRDT overexpression promotes ovarian cancer cell progression. Targeting BRDT could be a novel strategy to treat ovarian cancer.


2017 ◽  
Author(s):  
Kosuke Hiramatsu ◽  
Satoshi Serada ◽  
Takayuki Enomoto ◽  
Takuhei Yokoyama ◽  
Yusuke Takahashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document